K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)

\(\Rightarrow A=1-\frac{1}{256}\)

\(\Rightarrow A=\frac{255}{256}\)

4 tháng 7 2019

\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{256}-\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)

\(\frac{1.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{4}\right)}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{3}{64}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{3}{4}+\frac{63}{256}\right)}{\frac{3}{4}+\frac{12}{256}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.3.\left(\frac{1}{4}+\frac{21}{256}\right)}{3.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}+\frac{17}{256}\right)}{\frac{1}{4}+\frac{1}{64}}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(\frac{3.\left(\frac{1}{4}+\frac{1}{64}\right)+3.\frac{17}{256}:\left(\frac{1}{4}+\frac{1}{64}\right)}{1.\left(\frac{1}{4}+\frac{1}{64}\right)}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\left(3+\frac{51}{256}:\frac{17}{64}\right)+\frac{5}{8}\) 

\(\frac{1}{2}.\left(3+\frac{3}{4}\right)+\frac{5}{8}\)

\(\frac{1}{2}.\frac{15}{4}+\frac{5}{8}\)

\(\frac{15}{8}+\frac{5}{8}\)

\(\frac{5}{2}\)

4 tháng 7 2019

\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{17}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}-\frac{-5}{8}\)

\(=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{17}}{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{17}\right)}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{4}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

\(=\frac{1}{2}.\frac{111}{68}+\frac{5}{8}\)

\(=\frac{49}{34}\)

28 tháng 6 2017

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{128}-\frac{1}{256}\)

=\(1-\frac{1}{256}\)

=\(\frac{255}{256}\)

28 tháng 6 2017

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256

= 128/256 + 64/256 + 32/256 + 16/256 + 8/256 + 4/256 + 2/128 + 1/256

= 255/256

5 tháng 8 2016

\(=1-\frac{1}{256}=\frac{255}{256}\)

5 tháng 8 2016

Nhận xét :

1/2 = 1 - 1/2   ;   1/4 = 1/2 - 1/4   ;   1/8 = 1/4 - 1/8   ;   .....   ;   1/256 = 1/128 - 1/256

=> A = 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + ..... + 1/128 - 1/256

=> A = 1 - 1/256 = 255/256

21 tháng 6 2015

đây là toán lớp 6 sao trông khó khó

21 tháng 6 2015

    \(B=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)

=>\(B=\frac{1.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}{3.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{14}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{\frac{4}{4}-\frac{4}{16}-\frac{4}{64}-\frac{4}{256}}+\frac{5}{8}\)

=>\(B=\frac{1}{3}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)

=>\(B=\frac{1}{3}.\frac{3}{4}+\frac{5}{8}\)

=>\(B=\frac{1}{4}+\frac{5}{8}\)

=>\(B=\frac{2}{8}+\frac{5}{8}\)

=>\(B=\frac{7}{8}\)

l-i-k-e cho mình nhé bạn.

31 tháng 3 2017

quy đồngcác phân số lấy mẫu số là 512 .ta có tử số là 

256 +128 + 64 +32 +16 +8 +4 +2 +1 =495

A =\(\frac{495}{512}\)

31 tháng 3 2017

cho hỏi làm thế nào để nó ra phân số như thế kia zạ

5 tháng 6 2018

Theo đề bài ta có :

\(2B=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)

\(\Leftrightarrow2B-B=\left(1+\frac{1}{2}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)

\(\Leftrightarrow B=1-\frac{1}{256}\)

\(\Leftrightarrow B=\frac{255}{256}\)

5 tháng 6 2018

\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+..+\frac{1}{256}\)

\(\Rightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^8}\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^7}\)

\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)

\(\Rightarrow B=1-\frac{1}{2^8}\)

9 tháng 3 2017

a) \(\frac{1}{9}\)

b) -1100