K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

Bài 2:

a, \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right)z-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

16 tháng 10 2019

2a ) Ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)

25 tháng 12 2015

ta có x+y+z=0

=> x+y=-z

=> (x+y)^3=(-z)^3

=> x^3+y^3+3xy(x+y)=-z^3

x^3+y^3+z^3+3xy(x+y)=0

x^3+y^3+z^3-3xyz=0

=> x^3+y^3+z^3=3xyz

kagamine rin len đúng rồi đó

8 tháng 12 2016

ĐS: P=8

8 tháng 12 2016

em cung ham mo tara

NV
16 tháng 7 2021

Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\)

\(P=3a^2+b^2+3c^2\)

Biểu thức này chỉ có min, không có max

16 tháng 7 2021

Dạ vâng ạ, e cảm ơn thầy

21 tháng 12 2016

\(x^3+y^3+z^3=3xyz\)

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz=0\)

\(\Rightarrow\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)=0\)

\(\Rightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Rightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) (do \(x+y+z\ne0\))

\(\Rightarrow\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\)\(\Rightarrow\begin{cases}x=y\\y=z\\z=x\end{cases}\)\(\Rightarrow x=y=z\)

\(\Rightarrow P=\left(1+\frac{1}{1}\right)\left(1+\frac{1}{1}\right)\left(1+\frac{1}{1}\right)=2\cdot2\cdot2=8\)

 

 

25 tháng 12 2016

8

20 tháng 12 2016

mấy bạn zải zúp mình mình đang cần gấp

20 tháng 12 2016

Dễ dàng CM được \(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\) đúng với mọi x,y,z,

Vậy có hai khả năng:

Trường hợp 1: \(x+y+z=0\). Khi đó \(P=\frac{2016xyz}{\left(-x\right)\left(-y\right)\left(-z\right)}=-2016\).

Trường hợp 2: \(x=y=z\). Khi đó \(P=\frac{2016x^3}{\left(2x\right)^3}=252\) (trường hợp này chỉ xảy ra khi x,y,z khác 0)

7 tháng 7 2021

Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)

\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)

=> đpcm