K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

52n+1.2n+2+3n+2.22n+1=52n.5.2n.22+3n.32.22n.2

=(25n.2n)(5.4)+(3n.4n)(9.2)=50n.20+12n.18

50 đồng dư với 12 (mod 38)

=>50n đồng dư với 12n (mod 38)

12 đồng dư với 12 (mod 38)

=>12n đồng dư với 12n (mod 38)

=>50n.20+12n.18 đồng dư với 12n.20+12n.18=12n.38 đồng dư với 0(mod 38)

=>52n+1.2n+2+3n+2.22n+1 chia hết cho 38

=>đpcm

5 tháng 12 2021

Ta có 52n+7 = 25n+7

Lại có 25:8 dư 1 => 25n:8 dư 1n

Mà 1n = 1 => 25n chia 8 dư 1

=> 25n+7 chia 8 dư 1+7 hay dư 8

Mà 8⋮8 => đpcm

27 tháng 7 2017

1) 2n - 9 chia hết cho n+3

\(\Rightarrow2n-9=2n+6-15=2\left(n+3\right)-15\)chia hết cho n + 3 

Vậy n + 3 thuộc Ư(15)

n + 3 \(\in\)Ư(15) = { 1,3,5,15,-1,-3,-5,-15}

Lập bảng ra nhé 

2) \(4n+5=4n-24+29=4\left(n-6\right)+29⋮n-6\)

Vậy n-6 \(\in\)Ư(29)

n - 6 \(\in\){ 1,29,-1,-29}

\(\in\){ 7 ; 35 ; 5 ; -23}

27 tháng 7 2017

3) \(3n+7=3n+3+4=3\left(n+1\right)+4⋮n+1\)

=> n + 1 \(\in\)Ư(4)

n + 1 \(\in\){ 1,2,4,-1,-2,-4}

Sau đó bạn lập bảng rồi tìm n

4) 12 chia hết cho n-5 nên n - 5 \(\in\)Ư(12)

=> n - 5 \(\in\){ 1,2,3,4,6,12,-1,-2,-3,-4,-6,-12}

5) -15 chia hết cho n +  6 

=> n + 6 thuộc Ư(-15) 

Hay n + 6 thuộc { 1,3,5,15,-15,-3,-5,-1}

16 tháng 7 2019

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

NV
21 tháng 11 2021

Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên

\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)

\(=4.8^m+2.8^{m+1}+1\)

Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)

\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)

\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)

21 tháng 11 2021

có cách nào k dùng mod k ạ?

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6