Chứng minh :(7100+799+798) chia hết cho 57
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 10^2003 + 125 = (10^2003 -10) + 135 Vì 135 chia hết cho 45 nên chỉ cần chứng minh B = 10^2003 - 10 chia hết cho 45
Ta có B = 10^2003 -10 =10.(10^2002 - 1) = 10.(10^1001 -1).(10^1001 + 1) = 999...90.(10^1001 + 1) chia hết cho 45 (đpcm)
Chú ý : 10^1001 - 1 = 999...9 Là số có 1001 chữ số 9
Bạn thấy thế nào với lời giải của mình?
b/ C = 543.799.111 + 58 = (60.9 + 3).(88.9 + 7).(11.9 + 2) + 58 = (9.k + 21).(11.9 + 2) + 58 = 9.m + 42 + 58 = 9.m + 90 chia hết cho 9 . Vậy C là hợp số
Ở trên mình làm vắn tắt, bạn nhân đa thức cụ thể ra nhé
umm, bn nhân A với 1/7 và nhân B với 1/9, sau đó tính ra và so sánh thôi
106 - 57 = (2.5)6 - 56.5 = 26.56 - 56.5=56.(26 - 5)=56.59⋮ 59
A=7+72+73+...+72016
=(7+72)+(73+74)+...+(72015+72016)
=7.(1+7)+73.(1+8)+...+72015.(1+7)
=7.8+73.8+...+72015.8
=8.(7+73+...+72015) chia hết cho 8 (đpcm)
A=7+72+73+...+72016
=(7+72+73)+...+(72014+72015+72016)
=7.(1+7+72)+...+72014.(1+7+72)
=7.57+...+72014.57
=57.(7+...+72014) chia hết cho 57 (đpcm)
\(A=7+7^2+7^3+...+7^{120}\\ A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\\ A=7\times\left(1+7+7^2\right)+...+7^{118}\times\left(1+7+7^2\right)\\ A=7\times57+7^4\times57+...+7^{118}\times57\\ A=57\times\left(7+7^4+...+7^{118}\right)\\ \Rightarrow A⋮57\)
\(A=7+7^2+7^3+...+7^{119}+7^{120}\)
\(\Rightarrow7A=7^2+7^3+7^4+...+7^{120}+7^{121}\)
\(\Rightarrow7A-A=\left(7^2+7^3+...+7^{120}+7^{121}\right)-\left(7+7^2+...+7^{119}+7^{120}\right)\)
\(\Rightarrow6A=7^2+7^3+...+7^{120}+7^{121}-7-7^2-...-7^{119}-7^{120}\)
\(\Rightarrow6A=7^{121}-7\)
\(\Rightarrow A=\dfrac{7^{121}-7}{6}\)
(7^100+7^99+7^98)
= 7^98(7^2+7+1)
= 7^98 x 57 chia hết cho 57
(7100+799+798)
=798(799+798)
=798.57 chia hết cho 57
**** nha