Cho đường thẳng ( d ) : y = -2x + 3
a) Xác định tọa độ giao điểm A và B của đường thẳng ( d ) với hai trục Ox , Oy . Tinh khoang cach tu diem O ( 0 ; 0 ) den duong thang (d)
b) Tính khoảng cách từ điểm C ( 0 ; -2 ) đến đường thẳng ( d )
AI GIẢI NHANH VÀ CHI TIẾT MINH TÍCH 20 LIKE !
a/ Tọa độ A là nghiệm của hệ
\(\hept{\begin{cases}y=-2x+3\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1,5\\y=0\end{cases}}\)
=> A(1,5; 0)
Tọa độ B là nghiệm của hệ
\(\hept{\begin{cases}x=0\\y=-2x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}\)
=> B(0; 3)
Khoản cách từ O(0; 0) đến d
\(=\frac{\left|0-2×0-3\right|}{\sqrt{1^2+2^2}}=\frac{3}{\sqrt{5}}\)
b/ Khoản cách từ C(0; - 2) đến d là
\(d\left(C,d\right)=\frac{\left|-2+2×0-3\right|}{\sqrt{1^2+2^2}}=\frac{5}{\sqrt{5}}=\sqrt{5}\)
A/ TỌA ĐỘ A THỎA \(\hept{\begin{cases}Y=0\\Y=-2X+3\end{cases}}\)\(\Rightarrow\Rightarrow A\left(\frac{3}{2},O\right)\)
TỌA ĐỘ B THỎA,\(\hept{\begin{cases}Y=-2X+3\\X=0\end{cases}}\)\(\Rightarrow B\left(0,3\right)\)
GOI H LA HINH CHIEU CUA O LEN (d) ap dung he thuc luong trong tam giac vuongOAB cho
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Leftrightarrow\frac{1}{OH^2}=\frac{1}{\left(\frac{3}{2}\right)^2}+\frac{1}{3^2}\Rightarrow AH=\frac{3}{\sqrt{5}}\)
B/GỌI K LÀ HÌNH CHIẾU CỦA C LÊN (d) ta co\(\frac{OH}{CK}=\frac{OB}{OC}=\frac{3}{5}\Rightarrow CK=\frac{5}{3}OH=\sqrt{5}\)
(....20 NHA)