CMR: m.n ( m2- n2) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu m hoặc n chia hết cho 3 thì hiển nhiên \(nm\left(m^2-n^2\right)⋮3\)
Nếu cả m và n đều không chia hết cho 3 thì \(m^2,n^2\) đều chia 3 dư 1 (tính chất của số chính phương). Do đó \(m^2-n^2⋮3\) nên \(mn\left(m^2-n^2\right)⋮3\)
Vậy \(mn\left(m^2-n^2\right)⋮3\) với mọi cặp số nguyên m, n.
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
m2+mn+n2
=m2-2mn+n2+3mn
=(m-n)2+3mn chia hết cho 9
3mn chia hết cho 3
=>(m-n)2 chia hết cho 3
=>(m-n)2 chia hết cho 9
=>3mn chia hết cho 9
=>mn chia hết cho 3
=>m hoặc n chia hết cho 3
do tính chất của m;n tương đương nhau nên giả sử m chia hết cho 3
m-n chia hết cho 3
=>n chia hết cho 3
=>điều kiện cần và đủ để m^2+m.n+n^2 chia hết cho 9 là m,n chia hết cho 3
=>đpcm
Điều kiện cần:
(ký hiệu | nghĩa là "chia hết cho")
Nếu m và n đều | 3 thì m2 , n2 và m.n đều | 9 nên m2+n2+mn sẽ | 9
Điều kiện đủ:
Nếu m2+n2+mn | 9 ta sẽ cm m,n | 3
Ta có: m2+n2+mn = (m-n)2 + 3mn
=> 3mn | 9 <=> mn | 3 (1)
Mà (m-n)2 | 9 nên m-n | 3 (2)
Kết hợp (1) và (2) suy ra m,n đều | 3
Ta có: m.n(m2 – n2) = m.n[(m2 – 1) – ( n2 – 1)]
= n[m(m2 – 1) – m{n( n2 – 1)}]
=m.n( m – 1)( m + 1) – m.n( n – 1)(n + 1)
Vì: m( m – 1)(m + 1) chia hết cho 6 (tích của 3 số tự nhiên liên tiếp)
và n(n – 1)(n + 1) chia hết cho 6 (tích của 3 số tự nhiên liên tiếp
=> mn(m2 - n2) chia hết cho 6.(đpcm)
nhưng cái này mk hỏi là chia hết cho 3 cơ
bn nhầm ruì