K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

gọi 2 số cần tìm là a ; b

ta có: BCNN (a,b) = ab

=> UCLN (a,b) = ab ; BCNN (a,b) = 4320 : 360 = 12

gọi a = 12m

     b = 12n (ULCN (m,n) = 1

=> ab = 12m . 12n = 4320

=> 144m.n = 4320

=> mn = 30

ta tìm được (m,n) = (1;30) ; (2;15) ; (3;10) ; (5;6) ; (10;3) ; (15;2) ; (30;1)

lấy m,n nhân vs 12 ta tìm được (a;b) = (12;360) ; (14;180) ; (36;120) ; (60;72) ; (72;60) ; (120;36) ; (180;14) ; (360;12) .

24 tháng 2 2018

a+ b=120 và (a;b )=12

ta có a` .12= a ; b` . 12 = b

=> a+b= 12.a`+12.b`=120

=> 12(a`+b`)=120

=> a`+ b` =120 / 12 = 10

Ta có bảng sau 

      a`134
      b`975
      a123648
       b1088460
AH
Akai Haruma
Giáo viên
18 tháng 1

Lời giải:

a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Khi đó: $BCNN(a,b)=dxy$

Theo bài ra: $d+dxy=19$

$\Rightarrow d(1+xy)=19$

Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:

TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$

Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$

$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$

b,c bạn làm tương tự theo hướng của câu a nhé.

19 tháng 2 2019

Sr vì cái tên

19 tháng 12 2023

Do ƯCLN(a,b) = 12

=> a = 12 × a'; b = 12 × b' (a';b')=1

Ta có:

a + b = 120

12 × a' + 12 × b' = 120

12 × (a' + b') = 120

a' + b' = 120 : 12

a' + b' = 10

Giả sử a > b => a' > b' mà (a';b')=1 => a' = 9; b' = 1 hoặc a' = 7; b' = 3

+ Với a' = 9; b' = 1 => a = 108; b = 12

+ Với a' = 7; b' = 3 => a = 84; b = 36

Vậy các cặp giá trị a,b thỏa mãn là: (108;12) ; (84;36) ; (36;84) ; (12;108)

ƯCLN(a,b)=34=>a chia hết cho 34;b chia hết cho 34

ta có a=m.34;b=n.34(m,n là số tư nhiên)

=>a.b=34.m.34.n=6936 

            m.n.1156 =6936

            m.n          =6936:1156

            m.n           =6=1.6=6.1=2.3=3.2

vậy:(m,n):(1;6),(6;1),(2;3),(3;2)

do 72= 32.23

nếu ít nhất trong 2 số a , b có 1 số chia hết cho 2 

giả sử a chia hết cho 2 =>b=42-a cũng chia hết cho 2

=> cả a và b đều chia hết cho 2

vì vậy tương tự ta cũng có a,b chi hết cho 3

=>a và b chia hết cho 6

ta thấy 42=36+6=30+12=18+24(là tổng 2 số chia hết cho 6)

trong các số trên chỉ có số 18 và 24 thỏa mãn

=>a=18;b=24

a: a=108; b=12

a=84; b=36

a=12; b=108

a=36; b=84