K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

H�nh ?a gi�c TenDaGiac1: DaGiac[E, D, 6] ?o?n th?ng f: ?o?n th?ng [E, D] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng g: ?o?n th?ng [D, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng h: ?o?n th?ng [C, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng i: ?o?n th?ng [B, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng j: ?o?n th?ng [A, F] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng k: ?o?n th?ng [F, E] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng l: ?o?n th?ng [B, N] ?o?n th?ng m: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [A, D] ?o?n th?ng r: ?o?n th?ng [A, N] ?o?n th?ng s: ?o?n th?ng [O, N] ?o?n th?ng t: ?o?n th?ng [I, D] ?o?n th?ng a: ?o?n th?ng [O, I] ?o?n th?ng b: ?o?n th?ng [M, O] E = (-1.3, 1.4) E = (-1.3, 1.4) E = (-1.3, 1.4) D = (2.28, 1.44) D = (2.28, 1.44) D = (2.28, 1.44) ?i?m C: DaGiac[E, D, 6] ?i?m C: DaGiac[E, D, 6] ?i?m C: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m M: Trung ?i?m c?a g ?i?m M: Trung ?i?m c?a g ?i?m M: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a f ?i?m I: Giao ?i?m c?a l, m ?i?m I: Giao ?i?m c?a l, m ?i?m I: Giao ?i?m c?a l, m ?i?m O: Giao ?i?m c?a n, p ?i?m O: Giao ?i?m c?a n, p ?i?m O: Giao ?i?m c?a n, p

a. Ta thấy \(\Delta ABC=\Delta BCD\left(c-g-c\right)\Rightarrow AC=BD;\widehat{ACB}=\widehat{BDC}\)

\(\Rightarrow\widehat{ACM}=\widehat{BDN}\Rightarrow\Delta AMC=\Delta BND\left(c-g-c\right)\)

\(\Rightarrow\widehat{AMC}=\widehat{BND}\Rightarrow\widehat{AMC}+\widehat{AMD}=\widehat{BND}+\widehat{AMD}=180^o\)

\(\Rightarrow\widehat{NIM}+\widehat{NDM}=180^o\Rightarrow\widehat{AIB}=180^o-120^o=60^o.\)

b. Ta thấy ON vuông góc ED nên ON cũng vuông góc AB. Lại có tam giác ANB cân tại N; NO là đường cao nên nó là phân giác. Vậy \(\widehat{ANO}=\widehat{BNO}\)

Lại có AD là trung trực MN  nên \(\widehat{ANO}=\widehat{AMO}\Rightarrow\widehat{BNO}=\widehat{AMO}\Rightarrow\) tứ giác OIMN nội tiếp.

Lại dễ thấy OMDN cũng nội tiếp nên O; I; M ;D; N cùng thuộc đường trong đường kính OD. Vậy \(\widehat{OID}=90^o.\)

(Cô làm theo cách lớp 9)

11 tháng 11 2016

em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.

NV
17 tháng 9 2021

\(T=\left|\overrightarrow{DF}\right|=\left|\overrightarrow{DE}+\overrightarrow{EF}\right|\Rightarrow T^2=DE^2+EF^2+\overrightarrow{DE}.\overrightarrow{EF}\)

\(=a^2+a^2+a.a.cos60^0=3a^2\)

\(\Rightarrow\left|\overrightarrow{DF}\right|=a\sqrt{3}\)

\(AC=FD\Rightarrow\left|\overrightarrow{AC}\right|=a\sqrt{3}\)

\(P=\left|\overrightarrow{AI}\right|=\left|\dfrac{1}{2}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AC}\right|\Rightarrow P^2=\dfrac{1}{4}\left(AD^2+AC^2+2\overrightarrow{AD}.\overrightarrow{AC}\right)\)

\(=\dfrac{1}{4}\left(4a^2+3a^2+2.2a.a\sqrt{3}.cos30^0\right)=\dfrac{11}{2}a^2\)

\(\Rightarrow\left|\overrightarrow{AI}\right|=\dfrac{a\sqrt{22}}{2}\)

NV
17 tháng 9 2021

undefined

9 tháng 5 2018

Đáp án C

NV
14 tháng 9 2021

Chắc là lục giác đều?

Các vecto bằng \(\overrightarrow{AB}\) là \(\overrightarrow{FO};\overrightarrow{OC};\overrightarrow{ED}\)

undefined

14 tháng 9 2021

Cảm ơn ạ