K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

n có 2 số

10 tháng 11 2016

Là nhũng số nào?Cách làm?

30 tháng 10 2016

\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\Leftrightarrow\frac{1}{3,5}< \frac{1}{n}< \frac{1}{1,75}\Rightarrow3,5>n>1,75\Rightarrow n=2;3\).Vậy có 2 giá trị n

Bạn thi violympic hả ?

12 tháng 11 2017

mình cũng thi

6 tháng 11 2016

n={2;3}

4 tháng 11 2016

Ta có: \(\frac{2}{7}< \frac{1}{x}< \frac{4}{7}\Leftrightarrow\frac{4}{14}< \frac{1}{x}< \frac{8}{14}\)

Suy ra \(\frac{1}{x}\in\left\{\frac{5}{14};\frac{6}{14};\frac{7}{14}\right\}\Rightarrow x\in\left\{\frac{14}{5};\frac{14}{6};\frac{14}{7}\right\}\Rightarrow x\in\left\{\frac{14}{5};\frac{7}{3};2\right\}\)mà x là số tự nhiên 

Nên x=2

Vậy x=2

5 tháng 11 2016

n= 2 ;3

tk nha

14 tháng 4 2016

4/14 < 4/x < 4/12

=> x=13

Nha bạn   

11 tháng 11 2016

Ta có: \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)

\(\Rightarrow\frac{4}{14}< \frac{4}{4n}< \frac{4}{7}\)

\(\Rightarrow14>4n>7\)

\(\Rightarrow4n\in\left\{8;9;10;11;12;13\right\}\)

\(\Rightarrow n\in\left\{2;2,25;2,5;2,75;3;3,25\right\}\)

Mà \(n\in N\)

\(\Rightarrow n\in\left\{2;3\right\}\)

Vậy \(n\in\left\{2;3\right\}\)

11 tháng 11 2016

có 14 số tự nhiên thoa mãn n

24 tháng 5 2016

ta có n/3<7/6=>2n/6<7/6=>2n<7=>n thuộc các giá trị (0;1;2;3)

24 tháng 5 2016

n = 3

tích đúng nhé!

2 tháng 8 2018

\(\frac{2}{3}+\frac{8}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}\)\(+\frac{1}{3}\)

\(\frac{94}{105}< \frac{x}{105}< \frac{92}{105}\)

\(\Rightarrow94< x< 92\)

\(\Rightarrow x=93\)

Vậy x=93

2 tháng 8 2018

\(\frac{2}{3}+\frac{8}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}+\frac{1}{3}\)

\(\frac{2.35+8.3}{105}< \frac{x}{105}< \frac{15+42+35}{105}\)

\(94< x< 92\)

Vậy ko có x thỏa mãn

13 tháng 8 2019

Đặt P = ... 

* Chứng minh P > 1/2 : 

\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)

Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là: 

\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)

\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)

Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)

\(\Rightarrow\)\(P>\frac{1}{2}\)

* Chứng minh P < 3/4 : 

Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)

\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)

\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)

... 

\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)

\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 ) 

\(\Rightarrow\)\(P< \frac{3}{4}\)