Tìm số tự nhiên n biết \(\frac{2}{7}< \frac{1}{n}< \frac{1}{14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\Leftrightarrow\frac{1}{3,5}< \frac{1}{n}< \frac{1}{1,75}\Rightarrow3,5>n>1,75\Rightarrow n=2;3\).Vậy có 2 giá trị n
Bạn thi violympic hả ?
Ta có: \(\frac{2}{7}< \frac{1}{x}< \frac{4}{7}\Leftrightarrow\frac{4}{14}< \frac{1}{x}< \frac{8}{14}\)
Suy ra \(\frac{1}{x}\in\left\{\frac{5}{14};\frac{6}{14};\frac{7}{14}\right\}\Rightarrow x\in\left\{\frac{14}{5};\frac{14}{6};\frac{14}{7}\right\}\Rightarrow x\in\left\{\frac{14}{5};\frac{7}{3};2\right\}\)mà x là số tự nhiên
Nên x=2
Vậy x=2
Ta có: \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow\frac{4}{14}< \frac{4}{4n}< \frac{4}{7}\)
\(\Rightarrow14>4n>7\)
\(\Rightarrow4n\in\left\{8;9;10;11;12;13\right\}\)
\(\Rightarrow n\in\left\{2;2,25;2,5;2,75;3;3,25\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{2;3\right\}\)
Vậy \(n\in\left\{2;3\right\}\)
ta có n/3<7/6=>2n/6<7/6=>2n<7=>n thuộc các giá trị (0;1;2;3)
\(\frac{2}{3}+\frac{8}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}\)\(+\frac{1}{3}\)
\(\frac{94}{105}< \frac{x}{105}< \frac{92}{105}\)
\(\Rightarrow94< x< 92\)
\(\Rightarrow x=93\)
Vậy x=93
\(\frac{2}{3}+\frac{8}{35}< \frac{x}{105}< \frac{1}{7}+\frac{2}{5}+\frac{1}{3}\)
\(\frac{2.35+8.3}{105}< \frac{x}{105}< \frac{15+42+35}{105}\)
\(94< x< 92\)
Vậy ko có x thỏa mãn
Đặt P = ...
* Chứng minh P > 1/2 :
\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)
Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là:
\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)
\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)
Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)
\(\Rightarrow\)\(P>\frac{1}{2}\)
* Chứng minh P < 3/4 :
Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)
\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)
\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)
...
\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)
\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 )
\(\Rightarrow\)\(P< \frac{3}{4}\)
n có 2 số
Là nhũng số nào?Cách làm?