Rút gọn biểu thức :
A , \(\left(x+2\right)^8-2.\left(x+8\right).\left(x-2\right)+\left(x-2\right)^2\)
B , \(x.\left(x-4\right).\left(x+4\right)-\left(x^2+1\right).\left(x^2-1\right)\)
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x-y=1\)
\(=>x+y=\left(x+y\right).\left(x-y\right)\)
\(A=\left(x+y\right).\left(x-y\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)
\(A=\left(x^2-y^2\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)
\(A=\left(x^4-y^4\right).\left(x^4+y^4\right)\)
\(A=x^8-y^8\)
= \(-\left[\left(x-y\right)\left(x^2-y^2\right)\left(x^4-y^4\right)\left(x^8-y^8\right)\left(x^{16}-y^{16}\right)\right]\)
= \(-\left[\left(x-y\right)\left(x-y\right)^2\left(x-y\right)^4\left(x-y\right)^8\left(x-y\right)^{16}\right]\)
= \(-\left(1\cdot1^2\cdot1^4\cdot1^8\cdot1^{16}\right)\)
= -1
a) \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-\left(x^2+x-3x-3\right)\)
\(=x^2-4-x^2-x+3x+3\)
\(=2x-1\)
b) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
a: Ta có: \(\left(3x-1\right)^2-2\left(5x-2\right)^2-2\left(x^2+x-1\right)\left(x-1\right)\)
\(=9x^2-6x+1-2\left(25x^2-20x+4\right)-2\left(x^3-x^2+x^2-x-x+1\right)\)
\(=9x^2-6x+1-50x^2+40x-8-2\left(x^3-2x+1\right)\)
\(=-41x^2+34x-7-2x^3+4x-2\)
\(=-2x^3-41x^2+38x-9\)
b: Ta có: \(\left(3a+1\right)^2+2\left(9a^2-1\right)+\left(3a-1\right)^2\)
\(=\left(3a+1+3a-1\right)^2\)
\(=36a^2\)
a: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2\)
b: \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+2x^2-x-2-x^3+8\)
\(=2x^2-x+6\)
a) \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left[\left(2x+1\right)+\left(2x-1\right)\right]^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=\left(4x\right)^2\)
\(=16x^2\)
b) \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3+2x^2-x-2\right)-\left(x^3-8\right)\)
\(=x^3+2x^2-x-2-x^3+8\)
\(=2x^2-x+6\)
a) \(A=\left(\frac{1}{4}x-y\right)\left(x^2+4xy+16y^2\right)+4\left(4y^3-\frac{1}{16}x^3+1\right)\)
\(\Leftrightarrow A=\frac{1}{4}\left(x-4y\right)\left(x^2+4xy+16y^2\right)+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=\frac{1}{4}\left(x^3-64y^3\right)+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=\frac{1}{4}x^3-16y^3+16y^3-\frac{1}{4}x^3+4\)
\(\Leftrightarrow A=4\)
b) \(B=2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x-5\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow B=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2-10x+25\right)-\left(x^2-2x+1\right)\)
\(\Leftrightarrow B=2x^3-16x^2+32x-x^3-5x^2+4x+20+2x^2-20x+50-x^2+2x-1\)
\(\Leftrightarrow B=x^3-20x^2+18x+69\)
c) \(C=\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
\(\Leftrightarrow C=\frac{5x\left(16x^2-25\right)}{\left(x-3\right)\left(3-8+4x\right)}\)
\(\Leftrightarrow C=\frac{5x\left(4x-5\right)\left(4x+5\right)}{\left(x-3\right)\left(4x-5\right)}\)
\(\Leftrightarrow C=\frac{5x\left(4x+5\right)}{x-3}\)
\(\Leftrightarrow C=\frac{20x^2+25x}{x-3}\)
d) \(D=\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)
\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a^2-b^2\right)\left(c^2-d^2\right)}\)
\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}\)
\(\Leftrightarrow D=\frac{1}{\left(a+b\right)\left(c+d\right)}\)
Chúc bạn học tốt !
=(x^2-y^2)(X^2+y^2)(X^4+y^4)(x^8+y^8)
=(x^4-y^4)(x^4+y^4)(x^8+y^8)
=(x^8-y^8)(x^8+y^8)
=x^16 - y^ 16
IF you can , give my answer a k
Bạn áp dụng hằng đẳng thức x2 - y2 = (x-y)(x+y)
\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
\(=\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
\(=\left(x^8-y^8\right)\left(x^8+y^8\right)=x^{16}-y^{16}\)
a: \(=2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
b: \(=3x^2-6x-5x+5x^2-8x^2+24\)
=-11x+24