K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

Đáp số: 51.

Đúng 100% luôn! 

Ai tk cho mình mình tk lại.

10 tháng 11 2016

dư 51 nha

11 tháng 11 2018

TA CÓ:

\(A=4k+3=25a+17\left(a;k\in N\right)\Rightarrow A+33=4k+36=25a+50\)

\(\Rightarrow A+33⋮4;25\Rightarrow A+33⋮4.25\Rightarrow A+33⋮100\)

\(\Rightarrow A:100\left(duw100-33\right)=67\)

17 tháng 5 2017

Theo bài ra ta có:

A=4a+3

=17b+9              (a,b,c \(\in N\))

=19c+13

Mặt khác: A+25 = 4a+3+25=4a+28=4(a+7)

=17b+9+25=17b+34=17(b+2)

=19c+13+25=19c+38=19(c+2)

Như vậy A+25 chia hết cho 4;17;19 (vì có chứa thừa số 4;17 và 19). Mà (4;17;19) = 1 \(\Rightarrow\)A+25 chia hết cho 1292

\(\Rightarrow\)A+25=1292k (\(k\in\)N*)

\(\Rightarrow\)A=1292k - 25 = 1292k - 1292 + 1267 = 1292(k-1)+1267

Do1267<1292 nên 1267 là số dư trong phép chia a cho 1292


 

17 tháng 5 2017

Goi số đã cho là A ta có

A=4a+3

  =  17b+9

  =19c+13

măt khác A+25=4a+3+25=4a+28=4.(a+7)

                      =17b+9+25=17b+34=17(b+2)

                     =19c+13+25=19c+28=19.(c+2)

..................................................................................

         K mk đi mk giải tiếp cho

 A = 36m + n, 3 <= n <= 35 
A + 4 và do vậy cả (n + 4) chia 4 dư 3 và chia hết cho 9. Trong 4 số 9, 18, 27, 36 chỉ có 27 chia 4 dư 3 => n + 4 = 27 => n = 23 
=> A = 36m + 23 
=> A chia 36 dư 23 

30 tháng 3 2022

cảm ơn ạ

Bài 2: 

Sửa đề: chia 23 dư 7

Vì a chia 17 dư 1 nên a-16 chia hết cho 17

Vì a chia 23 dư 7 nên a-16 chia hết cho 23

Vậy: a chia 391 dư 16

7 tháng 7 2021

Em Cảm ơn Anh

18 tháng 1 2020

Gọi số đã cho là A.Ta có:
A = 4a + 3 
 = 17b + 9          (a,b,c thuộc N)
 = 19c + 3 
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
                 =17b+9+25=17b+34=17(b+2)
                =19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.