cho A=1+2+3+...........+n (n thuộc N*)
B=2n+1
tìm ƯCLN(A,B)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ tạm thời trả lời câu c thôi:
+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (1)
+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2
suy ra: n.(n+5) sẽ chia hết cho 2 (2)
Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
Đặt: \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
=> \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}\Rightarrow}\hept{\begin{cases}n^4+2n^2=n\left(n^3+2n\right)⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
=> \(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
=> \(n^2+1⋮d\)
=> \(n\left(n^2+1\right)⋮d\)
=> \(n^3+n⋮d\)
=> \(\left(n^3+2n\right)-\left(n^3+n\right)⋮d\)
=> \(n⋮d\)mà \(n^4+3n^2+1⋮d\)
=> \(1⋮d\)
=> d = 1
=> \(\left(a;b\right)=1\)
chiu roi, Phuong Anh oi