Tính chiều cao của một lăng trụ đứng có chu vi đáy là 16cm và diện tích xung quanh bằng 128 cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong ΔΔABC vuông tại A theo định lí Pitago ta có ;
CB=√32+42=5(cm)CB=32+42=5(cm)
Diện tích xung quanh của lăng trụ :
(3 + 4 + 5).6 = 72(cm2)
b) Diện tích mặt đáy là :
12⋅3⋅4=6(cm2)12⋅3⋅4=6(cm2)
Thể tích của lăng trụ là:
6 x 6 = 36(cm2)
a. Thể tích là:
\(\frac{3x4}{2}\)x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
\(\sqrt{3^2+4^2}\) = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2
b. Diện tích xung quanh là:
(3 + 4) x 2 x 5 = 70 cm2
Đáp số : 70 cm2
Gọi chiều cao h và cạnh đáy của hình lăng trụ đứng là a, ta có: Diện tích xung quanh của hình lăng trụ đứng là 120cm2 => Chu vi đáy của hình lăng trụ đứng là P = 120 : h Vì đáy của hình lăng trụ là tam giác đều nên có thể tính diện tích đáy bằng công thức: S = (a2 * √3) / 4 Vậy diện tích xung quanh của hình lăng trụ đều bằng: 120 = P * h = (a * √3) / 4 * h => a = 8√5 và h = 15√3 Vậy chiều cao của hình lăng trụ đứng đó là 15√3, độ dài cạnh đáy của hình lăng trụ là 8√5.
S xq=120cm2
=>h*3a=120cm2
=>h*a=40cm2
=>\(\left(h,a\right)\in\left\{\left(1;40\right);\left(2;20\right);\left(4;10\right);\left(5;8\right);\left(8;5\right);\left(10;4\right);\left(20;2\right);\left(40;1\right)\right\}\)
Lời giải:
Diện tích đáy: $5.5=25$ (cm2)
Thể tích hình lăng trụ: $25\times 7=175$ (cm3)
Diện tích xung quanh hình lăng trụ:
$4.5.7=140$ (cm2)
bán kính đáy của đáy là:
16 : 3,14 : 2 = 2,5477707 (cm)
diện tích đáy là:
(2,5477707)2 x 3,14 = 20,38216559 (cm2)
chiều cao là:
128 : 20,38216559 = 6,28 (cm)