tam giác MNP vuông tại M, MN = 36, MP = 48 cm ,tia phân giác MK .tia phân giác của góc N cắt MK tại H .qua H kẻ đường thẳng song song với NP, cắt MN và MP ở d và e
a, tính độ dài NK
b, tính tỉ số MH/MK
c, tính DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)
a) Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(NP^2=MN^2+MP^2\)
\(\Leftrightarrow NP^2=36^2+48^2=3600\)
hay NP=60(cm)
Xét ΔMNP có MK là đường phân giác ứng với cạnh NP(gt)
nên \(\dfrac{NK}{MN}=\dfrac{KP}{MP}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{NK}{36}=\dfrac{KP}{48}\)
mà NK+KP=NP=60cm(K nằm giữa N và P)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{NK}{36}=\dfrac{KP}{48}=\dfrac{NK+KP}{36+48}=\dfrac{60}{84}=\dfrac{5}{7}\)
Do đó:
\(\dfrac{NK}{36}=\dfrac{5}{7}\)
hay \(NK=\dfrac{180}{7}cm\)
Vậy: \(NK=\dfrac{180}{7}cm\)