Cho P = \(\dfrac{4\sqrt{x}}{\sqrt{x}+2}\left(ĐKXĐ:x\ge0;x\ne4\right)\). Tìm giá trị lớn nhất của P khi \(x\in N;x< 101\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{x-2\sqrt{x}+4}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}-2}\) (với \(x>0,x\ne4\))
\(B=\dfrac{x-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{\sqrt{x}-2}\)
\(B=\dfrac{x-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}\left(x-2\right)}\)
\(B=\dfrac{x-2\sqrt{x}+4-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(B=\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)
\(B=\frac{2\left(x+4\right)+\sqrt{x}\left(\sqrt{x}-4\right)-8\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(B=\frac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(B=\frac{3x-12\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)
vậy \(B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)
a, Với x >= 0 ; x khác 16
\(A=\left(\frac{x+5\sqrt{x}-27+\left(3-\sqrt{x}\right)\left(\sqrt{x}+4\right)}{x-16}\right):\frac{1}{\sqrt{x}+4}\)
\(=\left(\frac{x+5\sqrt{x}-27+3\sqrt{x}+12-x-4\sqrt{x}}{x-16}\right):\frac{1}{\sqrt{x}+4}\)
\(=\left(\frac{4\sqrt{x}-15}{x-16}\right):\frac{1}{\sqrt{x}+4}=\frac{4\sqrt{x}-15}{\sqrt{x}-4}\)
b, Ta có \(B=-2A\Rightarrow\sqrt{x}-4=-\frac{8\sqrt{x}-30}{\sqrt{x}-4}\)
\(\Leftrightarrow x-8\sqrt{x}+16=-8\sqrt{x}+30\Leftrightarrow x-14=0\Leftrightarrow x=14\left(tm\right)\)
a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)
\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)
\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)
=>A<1
c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)
=>A>=0 với mọi x thỏa mãn ĐKXĐ
mà A<1
nên 0<=A<1
=>Để A nguyên thì A=0
=>x=0
\(P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\)
\(=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Để |P-2|>P-2 thì P-2>0
\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}-4>0\)
hay x>16
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
\(\left|P-2\right|>P-2\)
\(\Leftrightarrow2-P>P-2\) ;\(P< 2\) ( vì \(P-2>P-2\left(vô.lý\right)\) )
\(\Leftrightarrow4>2P\)
\(\Leftrightarrow P< 2\)
\(\rightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}< 2\)
\(\Leftrightarrow3\sqrt{x}< 2\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}< 4\)
\(\Leftrightarrow x< 16\) ( t/m )
Với \(x\ge0;x\ne4\)
\(P=\dfrac{4\sqrt{x}}{\sqrt{x}+2}=\dfrac{4\left(\sqrt{x}+2\right)-8}{\sqrt{x}+2}=4-\dfrac{8}{\sqrt{x}+2}\)
Do \(\sqrt{x}\ge0\Rightarrow\dfrac{8}{\sqrt{x}+2}>0\)
Để P lớn nhất thì \(\dfrac{8}{\sqrt{x}+2}\) phải là số dương nhỏ nhất
\(\Rightarrow\sqrt{x}+2\) lớn nhất \(\Rightarrow x\) lớn nhất
Mà \(x\in N,x< 101\) \(\Rightarrow x=100\)
Vậy \(P_{max}=\dfrac{4\sqrt{100}}{\sqrt{100}+2}=\dfrac{4.10}{10+2}=\dfrac{40}{12}=\dfrac{10}{3}\)