K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

P = x6 + y6 = (x2 + y2)(x4 - x2 y2 + y4

= (x2 + y2)2 - 3x2 y2 \(\ge1-3×\frac{\left(x^2+y^2\right)^2}{4}=1-\frac{3}{4}=\frac{1}{4}\)

Đạt được khi x2 = y2 = \(\frac{1}{2}\)

10 tháng 12 2017
làm ra (x^2+y^2)^2-3.x^2.y^2 rùi ko bt
11 tháng 1 2021

14 tháng 8 2017

Chọn đáp án A

20 tháng 7 2017


6 tháng 11 2017

Chọn B.

P =  2 ( x 3 + y 3 )   -   3 x y    (do  x 2 + y 2   =   2 )

Đặt x + y = t. Ta có  x 2 + y 2   =   2  

Từ 

P = f(t) 

Xét f(t) trên [-2;2].

Ta có 

 

Bảng biến thiên

Từ bảng biến thiên ta có max P = max f(t) =  13 2 ; min P = min f(t) = -7

Lời bình: Có thể thay bbt thay bằng

Ta có 

Suy ra kết luận.

20 tháng 1 2018

21 tháng 8 2018

 

Đáp án D

Cho x,y > 0 thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( 2 + x y ) ⇔ 2 ( x + y ) 2 - ( 2 + x y ) ( x + y ) - 3 x y = 0   (*)

Đặt x + y = u x y = v  ta đc PT bậc II: 2 u 2 - ( v + 2 ) u - 3 = 0  gải ra ta được  u = v + 2 + v 2 + 28 v + 4 4

Ta có P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 ) = 4 ( x y + y x ) 3 - 9 ( x y + y x ) 2 - 12 ( x y + y x ) + 18  , đặt t = ( x y + y x ) , ( t ≥ 2 ) ⇒ P = 4 t 3 - 9 t 2 - 12 t + 18  ; P ' = 6 ( 2 t 2 - 3 t + 2 ) ≥ 0  với ∀ t ≥ 2 ⇒ M i n P = P ( t 0 )  trong đó t 0 = m i n t = m i n ( x y + y x )  với x,y thỏa mãn điều kiện (*).

Ta có :

t = ( x y + y x ) = ( x + y ) 2 x y - 2 = u 2 v - 2 = ( v + 2 + v 2 + 28 v + 4 ) 2 16 v - 2 = 1 16 ( v + 2 v + v + 4 v + 28 ) 2 - 2 ≥ 1 16 ( 2 2 + 32 ) 2 - 2 = 5 2

Vậy  m i n P = P ( 5 2 ) = 4 . ( 5 2 ) 2 - 9 ( 5 2 ) 2 - 12 . 5 2 + 18 = - 23 4

 

28 tháng 12 2019

Đáp án D

Phương pháp giải:

Đặt ẩn phụ, đưa về hàm một biến, dựa vào giả thiết để tìm điều kiện của biến

Lời giải:

Từ giả thiết chia cả 2 vế cho x2y2 ta được :  

Đặt  ta có 

Khi đó  

Ta có  mà 

nên 

Dấu đẳng thức xảy ra khi Vậy Mmax = 16

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả