K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2022

Do pt có 2 nghiệm phân biệt \(x_1,x_2\) nên theo đ/l Vi-ét , ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=3m\\P=x_1x_2=\dfrac{c}{a}=3m-1\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2=6\)

\(\Leftrightarrow S^2+2P-6=0\)

\(\Leftrightarrow\left(3m\right)^2+2\left(3m-1\right)-6=0\)

\(\Leftrightarrow9m^2+6m-2-6=0\)

\(\Leftrightarrow9m^2+6m-8=0\)

\(\Delta=b^2-4ac=6^2-4.9.\left(-8\right)=324>0\)

\(\Rightarrow\)Pt có 2 nghiệm \(m_1,m_2\)

\(\left\{{}\begin{matrix}m_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-6+18}{18}=\dfrac{2}{3}\\m_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-6-18}{18}=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(m=\dfrac{2}{3};m=-\dfrac{4}{3}\) thì thỏa mãn \(x_1^2+x_2^2=6\)

13 tháng 4 2022

\(\Delta=\left(-3m\right)^2-4\left(3m-1\right)\)

 \(=9m^2-12m+4=\left(3m-1\right)^2+3>0\)

=> pt luôn có 2 nghiệm phân biệt 

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=3m\\x_1.x_2=3m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\)

\(\Leftrightarrow\left(3m\right)^2-2\left(3m-1\right)=6\)

\(\Leftrightarrow9m^2-6m+2=6\)

\(\Leftrightarrow9m^2-6m-4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{3}\\x=\dfrac{1+\sqrt{5}}{3}\end{matrix}\right.\)

NV
21 tháng 4 2022

\(ac=-m^2-1< 0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm trái dấu với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow m^2-2\left(-m^2-1\right)=3\)

\(\Leftrightarrow3m^2=1\)

\(\Leftrightarrow m^2=\dfrac{1}{3}\)

\(\Leftrightarrow m=\pm\dfrac{1}{\sqrt{3}}\)

21 tháng 4 2022

xét delta 

m2 + 4m2 + 4 = 5m2 + 4 > 0 

=> phương trình luôn có 2 nghiệm x1x2

theo Vi-ét ta có:

\(\left\{{}\begin{matrix}x1+x2=m\\x1x2=-m^2-1\end{matrix}\right.\) 

x12 + x22 = 3 

<=> ( x1 +x2 )2 - 2x1x2 = 3 

<=> m2 + 2m2 + 2 = 3 

<=> 3m2 = 1 

=> m2 = \(\dfrac{1}{3}\)

=> m = +- \(\dfrac{1}{\sqrt{3}}\)

 

6 tháng 4 2023

Bạn viết vội hay gì mà chữ như rồng bay phượng múa thế :vv

5 tháng 4 2023

5x1+x2 thỏa mãn gì bạn nhỉ? Bạn bổ sung thêm đề nhé

5 tháng 4 2023

5x1+x2=0 bạn ạ 

31 tháng 8 2021

ta có \(\Delta\)'=(m-1)^2-3m+3=m^2-2m+1-3m+3=m^2-5m+4>/=0=>m</=1;m>/=4

pt cos 2 no âm pb=>\(\left\{{}\begin{matrix}S< 0\\P>0\\\Delta\ge0\end{matrix}\right.\)=>.....

5 tháng 3 2023

Ta có:

\(\text{∆}'=\left(m+1\right)^2-\left(m^2+m\right)\)

\(=m^2+2m+1-\left(m^2+m\right)=m+1\)

Để phương trình có 2 nghiệm phân biệt x1, x2

\(\Leftrightarrow\text{∆}'>0\Leftrightarrow m+1>0\Leftrightarrow m>-1\)

Áp dụng hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+m\end{matrix}\right.\)

Ta có: \(\dfrac{1}{x_1^2}+\dfrac{1}{x^2_2}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{x_1^2+x^2_2}{x_1^2.x_2^2}=\dfrac{1}{8}\)

\(\Leftrightarrow8[\left(x_1+x_2\right)^2-2x_1.x_2]=x_1^2.x_2^2\)

\(\Leftrightarrow8[[2\left(m+1\right)]^2-2\left(m^2+m\right)]=\left(m^2+m\right)^2\)

\(\Leftrightarrow8\left[4m^2+8m+4-2m^2-2m\right]=m^4+2m^3+m^2\)

\(\Leftrightarrow\)\(8\left[2m^2+6m+4\right]=m^4+2m^3+m^2\)

\(\Leftrightarrow m^4+2m^3-15m^2-48m-32=0\)

\(\Leftrightarrow\left(m+1\right)\left(m^3+m^2-16m-32\right)=0\)

Vì m>-1

\(\Leftrightarrow m^3+m^2-16m-32=0\)

Đến đây nghiêm xấu bạn xem lại đề hoặc có thể sử dụng CTN Cardano

a=1; b=-4; c=-m^2+3

Δ=(-4)^2-4*1*(-m^2+3)

=16+4m^2-12=4m^2+4>=4>0

=>Phương trình luôn có hai nghiệm phân biệt

5x1+x2=0 và x1+x2=4

=>4x1=-4 và x1+x2=4

=>x1=-1 và x2=5

x1x2=-m^2+3

=>-m^2+3=-5

=>m^2-3=5

=>m^2=8

=>\(m=\pm2\sqrt{2}\)