cho P :\(y=-\dfrac{1}{4}x^2\) xác định hệ số a, b của đường thẳng y=ax+b biết đồ thị của nó đi qua A(-1;3) và tiếp xúc với P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị hàm số của đường thẳng y = ax + b đi qua điểm A (2; 1).
\(\Rightarrow1=2a+b.\) (1)
Xét phương trình hoành độ giao điểm của hai đường thẳng y = -x và y = -2x + 1, ta có:
\(-x=-2x+1.\\ \Leftrightarrow x-2x+1=0.\\\Leftrightarrow\left(x-1\right)^2=0. \\ \Leftrightarrow x=1.\\ \Rightarrow y=-1.\)
\(\Rightarrow\) B (1; -1).
Đồ thị hàm số của đường thẳng y = ax + b đi qua điểm B (1; -1).
\(\Rightarrow-1=a+b.\) (2)
Từ (1); (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}1=2a+b.\\-1=a+b.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=1.\\a+b=-1.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2.\\b=-3.\end{matrix}\right.\)
\(\Rightarrow y=2x-3.\)
Thay x=-1 và y=3 vào (d), ta được:
b-a=3
=>b=a+3
PTHĐGĐ là:
-1/4x^2-ax-b=0
=>x^2+4ax+4b=0
Δ=(4a)^2-4*4b=16a^2-16b
Để (P) tiếp xúc (d) thì 16a^2-16b=0
=>a^2=b
=>a^2=a+3
=>a=(1+căn 13)/2 hoặc a=(1-căn 13)/2
=>b=(7+căn 13)/2 hoặc b=(7-căn 13)/2