\(\frac{2}{7}x-\frac{1-x}{3}=\frac{-11}{21}\)
Tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{21}=\frac{3}{x+1}\)
=> \(\left(x-1\right)\left(x+1\right)=21\cdot3\)
=> \(x^2-1=63\)
=> \(x^2=64\)
=> \(\orbr{\begin{cases}x^2=8^2\\x^2=\left(-8\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=8\\x=-8\end{cases}}\)
\(2\frac{7}{9}-\frac{12}{13}x=\frac{7}{9}\)
=> \(\frac{12}{13}x=2\)
=> \(x=\frac{13}{6}\)
d, \(\frac{x-1}{21}=\frac{3}{x+1}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=63\)
\(\Leftrightarrow x^2-1=63\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
e, \(2\frac{7}{9}-\frac{12}{13}x=\frac{7}{9}\)
\(\Leftrightarrow\frac{12}{13}x=2\Leftrightarrow x=\frac{13}{6}\)
mik ko chép lại đề, mik làm luôn:
a) x - \(\frac{31}{36}=\frac{-13}{38}\)
x = \(\frac{-13}{18}+\frac{31}{36}\)
\(x=\frac{5}{36}\)
b)\(2-x-\frac{3}{7}=\frac{9}{-21}\)
\(\frac{11}{7}-x=\frac{3}{7}\)
x = \(\frac{11}{7}-\frac{3}{7}\)
x = 8/7
c) x + 3/11 = 23/44
x = 23/44 - 3/11
x = 1/4
d) \(\frac{1}{12}-x=\frac{-11}{9}\)
x = \(\frac{1}{12}+\frac{11}{9}\)
x = 47/36
e) \(x-\frac{2}{3}=\frac{-17}{3}\)
x= -17/3 + 2/3
x = -5
f) \(x-\frac{1}{2}=\frac{11}{4}.\frac{3}{11}\)
x - 1/2 = 3/4
x = 3/4 + 1/2
x = 5/4
g) \(2x+\frac{3}{8}=\frac{-21}{32}.\frac{4}{7}\)
2x + 3/8 = -3 / 8
2x = -3/8 - 3/8
2x = -9/8
x = -9/8.1/2
x = -9/16
h) x - \(\frac{x}{3}=\frac{3}{57}.\frac{19}{12}\)
x - \(\frac{x}{3}=\frac{1}{12}\)
x = \(\frac{1}{12}+\frac{x}{3}\)
x = \(\frac{1+4x}{12}\)
=> 12x = 1+4x
12x - 4x = 1
8x = 1
x = 1/8
\(a/\frac{7}{9}-\frac{x}{3}=\frac{1}{9}\)
\(\Rightarrow\frac{x}{3}=\frac{7}{9}-\frac{1}{9}\)
\(\Rightarrow\frac{x}{3}=\frac{2}{3}\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
\(b/\frac{1}{x}-\frac{-2}{15}=\frac{7}{15}\)
\(\Rightarrow\frac{1}{x}=\frac{7}{15}+\frac{-2}{15}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{3}\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
\(c/\frac{-11}{14}-\frac{-4}{x}=\frac{-3}{14}\)
\(\Rightarrow\frac{-4}{x}=\frac{-11}{14}-\frac{-3}{14}\)
\(\Rightarrow\frac{-4}{x}=\frac{-4}{7}\)
\(\Rightarrow x=7\)
Vậy \(x=7\)
\(d/\frac{x}{21}-\frac{2}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{x}{21}=\frac{5}{21}+\frac{2}{3}\)
\(\Rightarrow\frac{x}{21}=\frac{19}{21}\)
\(\Rightarrow x=19\)
Vậy \(x=19\)
#Mạt Mạt#
\(a.\frac{4}{3}-\frac{3}{2}:X=\frac{1}{6}\)
\(\frac{3}{2}:X=\frac{4}{3}-\frac{1}{6}\)
\(\frac{3}{2}:X=\frac{8}{6}-\frac{1}{6}\)
\(\frac{3}{2}:X=\frac{7}{6}\)
\(X=\frac{3}{2}:\frac{7}{6}\)
\(X=\frac{3}{2}\times\frac{6}{7}\)
\(X=\frac{9}{7}\)
\(b.\left(X+\frac{2}{3}\right):\frac{1}{3}=\frac{41}{3}\)
\(X-\frac{2}{3}=\frac{41}{3}.\frac{1}{3}\)
\(X-\frac{2}{3}=\frac{41}{9}\)
\(X=\frac{41}{9}+\frac{2}{3}\)
\(X=\frac{41}{9}+\frac{6}{9}\)
\(X=\frac{47}{9}\)
a) Dễ thấy VT > 0;mà VT=VP
=>VP > 0 => 4x > 0=> x > 0
=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)
\(=>3x+1=4x=>x=1\)
a) Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )
Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)
<=>x=1
Vậy x=1
b)Điều kiện: \(x\ne-3;-10;-21;-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
=>x+34-x-3=x
<=>x=31 (nhận)
Vậy x=31
\(\left(x-\frac{7}{3}\right):2\frac{3}{21}+\frac{3}{5}=0,16\)
<=> \(\left(x-\frac{7}{3}\right):\frac{45}{21}+\frac{3}{5}=\frac{4}{25}\)
<=> \(\left(x-\frac{7}{3}\right):\frac{15}{7}=-\frac{11}{25}\)
<=> \(x-\frac{7}{3}=\frac{-33}{35}\)
<=> \(x=\frac{146}{105}\)
\(\left(x+\frac{5}{6}\right).2\frac{2}{5}-1\frac{1}{4}=0,35\)
<=> \(\left(x+\frac{5}{6}\right).\frac{12}{5}-\frac{5}{4}=\frac{7}{20}\)
<=> \(\left(x+\frac{5}{6}\right).\frac{12}{7}=\frac{8}{5}\)
<=> \(x+\frac{5}{6}=\frac{14}{15}\)
<=> \(x=\frac{1}{10}\)
học tốt
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
Ta có:
\(\frac{2}{7}x-\frac{1-x}{3}=\frac{-11}{21}\)
\(\frac{2}{7}x-\left(\frac{1}{3}-\frac{1}{3}x\right)=\frac{-11}{21}\)
\(\frac{2}{7}x+\frac{1}{3}x-\frac{1}{3}=-\frac{11}{21}\)
\(\left(\frac{6}{21}+\frac{7}{21}\right)x=-\frac{11}{21}+\frac{7}{21}\)
\(\frac{13}{21}x=-\frac{4}{21}\)
\(x=-\frac{4}{21}:\frac{13}{21}=-\frac{4}{21}.\frac{21}{13}=-\frac{4}{13}\)
Vậy \(x=-\frac{4}{13}\)
\(\frac{2}{7}x-\frac{1-x}{3}=\frac{-11}{21}\Leftrightarrow6x-7+7x=-11\Leftrightarrow13x=-4\Leftrightarrow x=\frac{-4}{13}\)