Tìm các số nguyên dương : x,y biết 2^x-2^y=224
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : (x > y > 0)
Đặt x = y + k
=> 2x - 2y = 224
<=> 2y + k - 2y = 224
<=> 2y(2k - 1) = 224
<=> 2y(2k - 1) : 32 = 224:32
<=> 2y - 5.(2k - 1) = 7
Ta có 7 = 1.7
Lập bảng xét các trường hợp
2y- 5 | 1 | 7 |
2k - 1 | 7 | 1 |
y | 5 | (loại) |
k | 3 | (loại) |
y = 5 ; k = 3 => y = 5;x = 8
Vậy x = 8 ; y = 5
- 2^y + 2^x - 224 = 0
- ( 2^y - 2^x + 224 ) = 0
2^y - 2^x + 224 = 0
Tìm cá số nguyên dương x,y biết:
\(2^x\)\(-\) \(2^y\)= \(224\)
=> \(2^x-2^y=2^{10}\)
=> \(2^y=2^{10}\)
=> y = 10
=> \(2^x=2^{10}+2^{10}\)
=> \(2^x=2^{11}\)
=> x = 11
Vậy x = 11; y = 10
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)
\(\Rightarrow\frac{x-3}{2}=\frac{10-x}{y}\)
\(\Rightarrow\left(x-3\right)y=\left(10-x\right)2\)
\(\Rightarrow xy-3y-20+2x=0\)
\(\Rightarrow x\left(y+2\right)-3\left(y+2\right)-14=0\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)-14=0\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)=14\)
\(\Rightarrow\left(y+2\right)\left(x-3\right)\inƯ\left(14\right)\)
Sau đó bạn lập bảng là được .
Ta có :
\(\frac{xy}{x^2.y^2}=\frac{11}{65}\Rightarrow\frac{1}{xy}=\frac{11}{65}\Rightarrow65=11.xy\)
=> x.y = 65/11 ( Do x,y nguyên dương =>xy cũng nguyên dương mà 65 không chia hết cho 11 => Dẫn đến Vô lí )