Tìm x,y,z biết:
\(\frac{x+y+2007}{z}=\frac{y+z-2008}{x}=\frac{x+z+1}{y}=\frac{2}{x+y+z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét BĐT sau với a,b >0 : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}=2\) \(\). Dấu "=" xảy ra khi a=b
Ta có : \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
= \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\) (1)
Áp dụng BĐT vừa c.m , ta suy ra :
\(\hept{\begin{cases}x^2+\frac{1}{x^2}\ge2\\y^2+\frac{1}{y^2}\ge2\\z^2+\frac{1}{z^2}\ge2\end{cases}}\) . Dấu "=" xảy ra khi x=y=z=1 (2)
Từ (1) và (2) => \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\)\(\ge2+1+2=6\)
Dấu "=" xảy ra khi x=y=z=1
Thay vào B , ta được :
B = 2+3+1 =6
ta có: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=\frac{1}{90}.\)
\(\Rightarrow2007.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)=2007\cdot\frac{1}{90}\)
\(\frac{2007}{x+y}+\frac{2007}{y+z}+\frac{2007}{x+z}=\frac{223}{10}\)
mà x+y+z = 2007
\(\Rightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}=\frac{223}{10}\)
\(1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{x+z}=\frac{223}{10}\)
\(\Rightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{x+z}=\frac{223}{10}-3=\frac{193}{10}\)
\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)
2=\(\frac{1}{x+y+z}\)(1)
Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)
Từ(1)=> x+y+1=2x(3)
x+z+2=2y(4)
z+y-3=2z(5)
Thay(2) vào (4) ta được: 0,5-y+2=2y
=> 2,5=3y
=> y=\(\frac{5}{6}\)
Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x
\(\frac{11}{6}\)=x
Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:
\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5
z=\(\frac{-13}{6}\)
Vậy ............
chúc bn học tốt.
k cho mik nha
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow y+z=\frac{1}{2}-x;x+z=\frac{1}{2}-y;z+y=\frac{1}{2}-x\)
THAY VÀO BIỂU THỨC TA CÓ:
\(\frac{\frac{1}{2}-x+1}{x}=2\Rightarrow\frac{3}{2}-x=2x\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\Rightarrow\frac{5}{2}-y=2y\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\Rightarrow\frac{-5}{2}-z=2z\Rightarrow z=-\frac{5}{6}\)
\(\frac{y+z+1}{x}+\frac{x+z+2}{y}+\frac{x+y-3}{z}=\frac{y+x+1+x+z+2+x+y-3}{x+y+x}=\frac{2x+2y+2z}{x+y+z}=2.\)
\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}=0,5\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}\)\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=0,5+1\)
\(\Leftrightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=1,5\)
\(\Leftrightarrow\frac{0,5+1}{x}=\frac{0,5+2}{y}=\frac{0,5-3}{z}=1,5\)
\(\Rightarrow\hept{\begin{cases}\frac{1,5}{x}=1,5\\\frac{2,5}{y}=1,5\\\frac{-2,5}{z}=1,5\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1,6\\z=-1,6\end{cases}}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau sau đây:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{\left(y+z+1\right)}{ }+\frac{\left(x+z+2\right)}{x+y+z}+\frac{\left(x+y-3\right)}{ }=2vi\left(x+y+z\ne0\right).Nênx+y+z=0,5\)
Thay kết quả này vào đề bài, ta được các phép tính như sau:
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z+3}{z}=2\)
Tức: \(\frac{1,5-x}{x}=\frac{2,5-y+2}{y}=\frac{0,5-2}{z}=2\)
Vậy: \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{-5}{6}\)
Chúc bạn học tốt nha!
theo t/c dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{2.\left(x+y+z\right)}{x+y+z}\)=2
=> \(\frac{1}{x+y+z}\) =2 => x+y+z =\(\frac{1}{2}\)
+) x+y+z = \(\frac{1}{2}\)
=> y+z = \(\frac{1}{2}\) - x
x+ z =\(\frac{1}{2}\) - y
x+y = \(\frac{1}{2}\) - z
bạn họ và tên là gì
bạn học trường nào