cho p là số nguyên tố lớn hơn 5. chứng mjnh rằng p8n +3.p4n -4 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nguyên tố lớn hơn 5 có dạng 3k + 1 hoặc 3 k + 2.
Thay từng trường hợp vào thì chứng minh được.
**** thì anh kết bạn với chú !
Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4
Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9
+) Với p = (...1), ta có: p4n=(...1)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...3), ta có: p4n=(...3)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...7), ta có: p4n=(...7)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5
p8n +3.p4n -4
=p4n.2+3.p4n-4
=(p4n)2+3.p4n-4
=p4n.p4n+3.p4n-4
=p4n.(p4n+3)-4
Vì p là số nguyên tố, p>5, nên:
p ko chia hết cho 5. p chia cho 5 dư 1,2,3,4.
Mà p4n.(p4n+3)-4 => p4n.(p4n+3)-4 chia 5 dư 4.
=> p chia 5 dư 4 => p4n.(p4n+3)-4 chia hết cho 5.
=> p8n +3.p4n -4 chia hết cho 5.
=>ĐPCM.
Ta thấy các số nguyên tố lớn hơn 5 nâng lên lũy thừa có số mũ chia hết cho 4 thì có tận cùng là 1.
VD:74=2401;118=214358881,...
=>Ta có:
p8n +3.p4n -4
=(...1)+3.(...1)-4
=(...1)+(...3)-4
=(...4)-4
=(...0) chia hết cho 5
Vậy p là số nguyên tố lớn hơn 5 thì p8n +3.p4n -4 chia hết cho 5
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240(p4−1) ⋮ 240 và (q4−1) ⋮ 240(q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240(p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)(p4−1)=(p−1)(p+1)(p2+1)
vì pp là số nguyến tố lớn hơn 55 nên pp là số lẻ
⟹(p−1)(p+1)⟹(p−1)(p+1) là tích của 22 số lẻ liên tiếp nên chia hết cho 88 (1)(1)
Do p>5p>5 nên:
p=3k+1→p−1=3k→p−1 ⋮ 3p=3k+1→p−1=3k→p−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)(2)
mặt khác vì pp là số lẻ nên p2p2 là số lẻ →p2+1→p2+1 là số chẵn nên p2+1 ⋮ 2p2+1 ⋮ 2 (3)(3)
giờ cần chứng minh p4−1 ⋮ 5p4−1 ⋮ 5:
pp có thể có dạng:
p=5k+1→p−1 ⋮ 5p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5kp=5k mà pp là số nguyến tố nên k=1→p=5k=1→p=5 (ko thỏa mãn ĐK)
⟹p4−1 ⋮ 5⟹p4−1 ⋮ 5 (4)(4)
từ (1),(2),(3),(4)(1),(2),(3),(4), suy ra p4−1p4−1 chia hết cho 2.3.5.82.3.5.8 hay p4−1 ⋮ 240p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240q4−1 ⋮ 240
Kết luận.......................
Ta thấy các số nguyên tố lớn hơn 5 nâng lên lũy thừa có số mũ chia hết cho 4 thì có tận cùng là 1.
VD:74=2401;118=214358881,...
=>Ta có:
p8n +3.p4n -4
=(...1)+3.(...1)-4
=(...1)+(...3)-4
=(...4)-4
=(...0) chia hết cho 5
Vậy p là số nguyên tố lớn hơn 5 thì p8n +3.p4n -4 chia hết cho 5
trần thùy dung thông minh wá