Chứng minh rằng: với mọi số a ta luôn có: -a2-6a ≤9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Yêu cầu bài toán tương đương chứng minh \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\) với mọi m
Tam thức có \(\Delta = {2^2} - 4.9.3 = - 104 < 0\)
Áp dụng định lí về dấu của tam thức bậc hai ta có
\(\Delta < 0\) và \(a = 9 > 0\) nên \(f\left( x \right)\) cùng dấu với a với mọi m
Vậy \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\) với mọi m \( \Leftrightarrow 9{m^2} + 2m > - 3\)với mọi m.
n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9
Vậy với mọi n la só tu nhiên thì n.2+n+1 ko chia hết cho 9
\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)
\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)
\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)
mà \(2a+12b+6c-13>2a+12b+6c-14\)
\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)
\(\Rightarrow dpcm\)
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(x=y\)
* Với n = 2 ta có 2 2 + 1 > 2.2 + 3 ⇔ 8 > 7 (đúng).
Vậy (*) đúng với n= 2 .
* Giả sử với n = k , k ≥ 2 thì (*) đúng, có nghĩa ta có: 2 k + 1 > 2 k + 3 (1).
* Ta phải chứng minh (*) đúng với n = k + 1, có nghĩa ta phải chứng minh:
2 k + 2 > 2 ( k + 1 ) + 3
Thật vậy, nhân hai vế của (1) với 2 ta được:
2.2 k + 1 > 2 2 k + 3 ⇔ 2 k + 2 > 4 k + 6 > 2 k + 5 .
( vì 4k + 6 > 4k + 5 > 2k + 5 )
Hay 2 k + 2 > 2 ( k + 1 ) + 3
Vậy (*) đúng với n = k + 1 .
Do đó theo nguyên lí quy nạp, (*) đúng với mọi số nguyên dương ≥ 2
Ta có :
2x + 6y = 2x + 2.3y = 2.(x + 3y) chia hết cho 2 với mọi số tự nhiên x và y
Ta có:
2x + 6y = 2.3y.(x + 3y) chia hết cho mọi số tự nhiên x và y
a, Ta có : \(a^2+a+1=a^2+2\dfrac{1}{2}a+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy : \(a^2+a+1>0\)
b, Xét hiệu : \(-a^2-6a-9\)\(=-\left(a^2+6a+9\right)=-\left(a+3\right)^2\le0\)
Vậy : \(-a^2-6a\le9\) Dấu "=" xảy ra khi a = - 3
đề câu b phải là -a^2-6a chứ
bạn xem lại đề hộ mk nếu đúng mk sẽ làm cho nha
Ta có: `-a^2-6a <= 9`
`<=>a^2+6a+9 >= 0`
`<=>(a+3)^2 >= 0` (Luôn đúng `AA a`)
Vậy với mọi số `a` ta luôn có `-a^2-6a <= 9`