Chứng minh rằng:
A=102008+125 chia hết cho 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(45=5.9\Rightarrowđể10^{2008}+125\) thì
\(\left(10^{2008}+125\right)⋮5;9\)
Vì \(125⋮5\) bởi có tận cùng là 5
Mà \(10^{2008}\) luôn có tận cùng là 0 nên chia hết cho 5.
\(\Rightarrow\left(10^{2008}+125\right)⋮5\) (1)
Và \(\left(125+1\right)⋮9\) mà \(10^{2008}:9\) dư 1
\(\Rightarrow\left(10^{2008}+125\right)⋮9\) (2)
Từ (1) và (2) suy ra \(\left(10^{2008}+125\right)⋮5;9\Rightarrow\left(10^{2008}+125\right)⋮45\)
1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10 chia hết cho 125 = 102510 chia hết cho 125
Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b
1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9
2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24
Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc
101983+125
101983=101973.1010
=Vì 1010=10000000000/45 nên 101973 .1010/ hay 101983/45
125/45
=>101983+125/45
(dấu"/" của mik nghĩa là chia hết)
vì 102008 có tổng các chữ số bằng 1 mà 125 có tổng các chữ số =8 nên khi ta thêm 1 sẽ được 9 \(⋮\)9
mà 125 đã có tận cùng là 5 nên125\(⋮\)5
\(\Rightarrow\)A\(⋮\)45
Dễ thấy 102008 \(⋮\) 5 và 45 \(⋮\) 5 nên A = 102008 + 45 \(⋮\) 5 (1).
Ta có: A = 100...0 (2008 chữ số 0) + 125.
Tổng các chữ số của tổng A là: 1 + 0 + 0 + ... + 0 + 1 + 2 + 5 = 9 \(⋮\) 9 nên A \(⋮\) 9 (2).
Từ (1) và (2) \(\Rightarrow A⋮\) 5 và 9 \(\Rightarrow A⋮BCNN\left(5;9\right)=45\left(đpcm\right)\)
b) A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220)
A=3.2+3.23+...+3.219
A=3.(2+23+25+...+219)
⇒A⋮3
phần c) làm tương tự
a/ A = 10^2003 + 125 = (10^2003 -10) + 135 Vì 135 chia hết cho 45 nên chỉ cần chứng minh B = 10^2003 - 10 chia hết cho 45
Ta có B = 10^2003 -10 =10.(10^2002 - 1) = 10.(10^1001 -1).(10^1001 + 1) = 999...90.(10^1001 + 1) chia hết cho 45 (đpcm)
Chú ý : 10^1001 - 1 = 999...9 Là số có 1001 chữ số 9
Bạn thấy thế nào với lời giải của mình?
b/ C = 543.799.111 + 58 = (60.9 + 3).(88.9 + 7).(11.9 + 2) + 58 = (9.k + 21).(11.9 + 2) + 58 = 9.m + 42 + 58 = 9.m + 90 chia hết cho 9 . Vậy C là hợp số
Ở trên mình làm vắn tắt, bạn nhân đa thức cụ thể ra nhé
\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)
Ý a phải chia hết cho 13 chứ em?
b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)
=40(1+...+3^8) chia hết cho 40
a: C ko chia hết cho 15 nha bạn