Cho m, n là các số nguyên dương thoả mãn 5m-n chia hết cho 5n-m. Chứng minh m chia hết cho n.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thử lấy cặp số là m=1 và n=5 => 0:24 = 0 (thỏa mãn đề bài) Nhưng mà 1 làm gì chia hết cho 5
ho m,n là các số nguyên dương sao cho
5m+n chia hết cho 5n+m.
Chứng minh rằng m chia hết cho n
(5m+n)/(5n+m)=k (k€N
<=>[5m/n+5]/(m/n+5)=k
<=>5-20/(m/n+5)=k
<=>m/n+5€{±5,±4,±2,±1,±10,±20)€N
m/n=t-5(t€N)
m=p.n
p€N=>m chia het n
Giả sử m;n;p không có số nào chia hết cho 3
=> m ; n;p có dạng 3k +1 hoặ 3k + 2 (k thuộc N)
=> m^2;n^2;p^2 có dạng 3x + 1(X thuộc N)
=> n^2 + p^2 cia 3 dư 2
Mà m^2 chia 3 dư 1
=> m^2 khác n^2 + p^2 ( trái vói giả thiết )
Vậy m;n;p có ít nhất1 số chia hết cho 3
=>m*n*p chia hết cho 3 (1)
Chứng minh tương tự :
m*n*p chia hếu cho 5 (2)
Từ (1) và (2) và (3;5)=1
=>m*n*p chia heetscho 3*5 =15
Vì 3^m+5^n chia hết cho 8, 8^n+8^m chia hết cho 8
=>(8^m+8^n) - (3^m+5^n) chia hết cho 8
=>3^n+5^m chia hết cho 8
Giả sử m,n đều là số chẵn .
Đặt n = 2a , m = 2b ( a,b thuộc Z+ ; a,b 》1 )
=> 3^m = 3^2b = 9^b đd 1 ( mod 8 ) ; 5^n = 5^2a = 25^a đd 1 ( mod 8 )
=> 3^m + 5^n đd 2 ( mod 8 ) ( trái với giả thiết )
=> Điều giả sử sai
=> m,n không cùng là số chẵn
Tương tự : Nếu trong 2 số m,n có 1 số chẵn , 1 số lẻ không thỏa mãn giả thiết
=> Cả m,n đều là số lẻ
Xét tổng 3^m + 5^n + 3^n + 5^m = ( 3^m + 5^m ) + ( 3^n + 5^n )
= ( 3 + 5 ).( 3^m-1 - 3^m-2.5 + ... + 5^m-1 ) + ( 3 + 5 ).( 3^n-1 - ... + 5^n-1 ) ( Vì m,n đều là số lẻ )
= 8.M + 8.N chia hết cho 8
Mà 3^m + 5^n chia hết cho 8 ( giả thiết )
=> 3^n + 5^m chia hết cho 8 ( đpcm )
Vậy 3^n + 5^m chia hết cho 8 .