Cho tam giác ABC nhọn có ba đường cao AK,BD,CE a. Chứng minh rằng: tam giác ABC ~ tam giác ACE b. Gọi H là giao điểm của AK, BD, CE. Chứng minh rằng :CH. CE=BC.CK c. Chứng minh rằng: BH. BD+CH. CE=BC^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Xét \(\Delta\)ABC có M,N lần lượt là trung điểm của B,C => MN song song với BC(t/c đường trung bình)
MN=\(\frac{1}{2}\)BC=6(cm)
có phải đường trung bình đâu bạn , nó có là trung điểm đâu
4 với 6 và 6 với 9 mà
a) Chứng minh tam giác AED đông dang tam giác ACB
b) Kẻ HI vuông góc BC
Có BHxBD+CHxCE=BC^2 bằng xét 2 cặp tam giác đông dạng.
Cho tam giác nhọn ABC có hai đường cao BD và CE căt nhau tại H .
Chứng minh rằng : BC^2=BH.BD+CH.CE
Bài này em có thể giải như sau
1)1) Ta có:
△CDH∼△ACE (g.g)△CDH∼△ACE (g.g)
⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE⇒CHAE=CDAC⇒CH.AC=AE.CD=AB.AE
△ADH∼△ACF (g.g)△ADH∼△ACF (g.g)
⇒ADAC=AHAF⇒AH.AC=AD.AF⇒ADAC=AHAF⇒AH.AC=AD.AF
Do đó: AC2=AH.AC+CH.AC=AB.AE+AD.AFAC2=AH.AC+CH.AC=AB.AE+AD.AF
2)2) Dựng HFHF vuông góc BC.BC. Ta có:
△BFH∼△BDC△BFH∼△BDC
⇒BFBD=BHBC⇒BF.BC=BD.BH⇒BFBD=BHBC⇒BF.BC=BD.BH
△CFH∼△CEB△CFH∼△CEB
⇒CF/CE=CHCB⇒CF.BC=CE.CH⇒CFCE=CHCB⇒CF.BC=CE.CH
Do đó: BC^2=BF.BC+CF.BC=BD.BH=CE.CH
các dấu kí tự bạn tự thêm nhé
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
BD=CE(ΔABD=ΔACE)
Do đó: ΔBDC=ΔCEB(cạnh huyền-cạnh góc vuông)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc CAE chung
Do đó; ΔABD đồng dạng với ΔACE
b: Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
góc ECK chung
Do đó: ΔCKH\(\sim\)ΔCEB
Suy ra: CK/CE=CH/CB
hay \(CH\cdot CE=CB\cdot CK\)