Cho a,b \(ε\)N. Chứng tỏ:
a) 90.a + 33.b chia hết cho 3
b) 100.a + 50.b + 7 không chia hết cho 5
c) 10! + 13 không chia hết cho 9
d) M= 1+2+22+...+259 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
b: \(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)=5\left(4^{20}+4^{22}\right)⋮5\)
c: \(A=\left(1+4+4^2\right)+...+4^{96}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{96}\right)⋮21\)
d: \(B=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{35}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{35}\right)⋮8\)
\(B=7\left(1+7+7^2\right)+...+7^{34}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{34}\right)\) chia hếtcho 3 và 19
70.a,nếu n chẵn thì n+10 chẵn chia hết cho 2,nếu n lẻ thì n+15 chẵn chia hết cho 2(vì bất kì một số nào nhân với số chẵn đều ra số chẵn)
làm tương tự vậy là được thui
A=13!-11!=11!.(12.13-1)=11!.155=1.2.3.4.5.....11.155
vì trong tích có các thừa soos2,5,155 nên A chia hết cho 2,5,155
a) 90.a + 33.b chia hết cho 3
=30+30.a+30+3.b
=30.(3+1+1)ab
=30.5ab
=150ab
150 chia hết cho 3 hay 150ab chia hết cho 3
vậy .............