n+1 và 2n+3 là hai số nguyên tố cùng nhau (n thuộc N*)
Tìm ƯCLN (n+1 ; 2n+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
Vì 2n+1 và 7n+6 là 2 số nguyên tố cùng nhau
=> ƯCLN(2n+1;7n+6) = 1
Vậy ƯCLN của 2n+1 và 7n+6 là 1
_HT_
Đặt a là UCLN(3n+2,2n+1) => 3n+2 chia hết cho a va 2+1 chia hết cho a.
=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a
=>2(3n+2)-3(2n+1) chia hết cho a
=>6n+4-6n-3 chia hết cho a
=> 1 chia hết cho a
=> a=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau.
Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*
=> 2n+1 chia hết cho d, 2n+3 chia hết cho d
=> (2n+3)-(2n+1) chia hết cho d
=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)
Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.
=> Ư(2n+1; 2n+3)=1
Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt