K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

ĐK: \(x,y\ge0\)

\(x\sqrt{x}-8\sqrt{y}=\sqrt{x}+y\sqrt{y}\Rightarrow\left(x-1\right)\sqrt{x}=\left(y+8\right)\sqrt{y}\)

\(\Rightarrow x\ge1\)

\(\Rightarrow\left(y+4\right)\sqrt{y+5}=\left(y+8\right)\sqrt{y}\Rightarrow\left(y+5\right)\left(y^2+8y+16\right)=y\left(y^2+16y+64\right)\)

\(\Rightarrow y^3+13y^2+56y+80=y^3+16y^2+64y\)

\(\Rightarrow-3y^2-8y+80=0\Rightarrow\orbr{\begin{cases}y=4\left(N\right)\\y=-\frac{20}{3}\left(l\right)\end{cases}}\)

Vậy y = 4 và x = 9.

3 tháng 11 2016

Đặt \(a=\sqrt{x},b=\sqrt{y}\) \(a,b\ge0\) thì hệ đã cho trở thành : 

\(\hept{\begin{cases}a^3-8b=a+b^3\\a^2-b^2=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\left(a^2-1\right)=b\left(b^2+8\right)\\a^2-b^2=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\left(b^2+4\right)=b\left(b^2+8\right)\\a^2-1=b^2+4\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a=\frac{b\left(b^2+8\right)}{b^2+4}\\a^2-b^2=5\end{cases}}\)

\(\Rightarrow\frac{b^2\left(b^2+8\right)^2}{\left(b^2+4\right)^2}-b^2=5\)

Lại đặt \(t=b^2,t\ge0\) thì : \(\frac{t\left(t+8\right)^2}{\left(t+4\right)^2}-t=5\Leftrightarrow t\left(t+8\right)^2-t\left(t+4\right)^2=5\left(t+4\right)^2\)

\(\Leftrightarrow\left(t-4\right)\left(3t+20\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=4\left(\text{nhận}\right)\\t=-\frac{20}{3}\left(\text{loại}\right)\end{cases}}\)

Với \(t=4\) thì \(b=2\) (Vì \(b\ge0\)) => \(a=3\)\(\left(a\ge0\right)\)

Vậy \(\hept{\begin{cases}a=3\\b=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=9\\y=4\end{cases}}\)

5 tháng 7 2017

giúp câu 2

5 tháng 7 2017

\(4\left(x^2+xy+y^2\right)=3\left(x+y\right)^2+\left(x-y\right)^2.\)
Đặt (x+y)=a ; (x-y)=b là ok nhé !!!!

25 tháng 2 2020

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

9 tháng 7 2017

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

2 tháng 4 2020

em ko biết làm :">

\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\2\sqrt{x-2}+2\sqrt{y-3}=10\end{cases}}\)

\(\Leftrightarrow2\sqrt{x-2}+3\sqrt{y-3}-2\sqrt{x-2}-2\sqrt{y-3}=14-10\)

\(\Leftrightarrow\sqrt{y-3}=4\Leftrightarrow y-3=16\Leftrightarrow y=19\)

\(\Rightarrow\sqrt{x-2}+\sqrt{19-3}=5\)

\(\Leftrightarrow x-2=\left(5-4\right)^2\Leftrightarrow x-2=1\Leftrightarrow x=3\)

\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3-y=6-2y\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x+2y=6\\6x-3y=21\end{cases}}\)

\(\Leftrightarrow6x+2y-6x+3y=6-21\)

\(\Leftrightarrow5y=-15\Leftrightarrow y=-3\)

\(\Rightarrow x=\frac{7-3}{2}=2\)

2 tháng 4 2020

\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y=3\\x+\sqrt{2}y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+\sqrt{2}y+y=3\\\sqrt{2}x+y=2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\sqrt{2}x+\sqrt{2y}+y-\sqrt{2}x-y=3-2\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}y=3-2\sqrt{2}\)

\(\Rightarrow y=\frac{3-2\sqrt{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}}-2\)( em ko biết rút gọn sao :vv)

\(\Rightarrow x+\sqrt{2}\left(\frac{3}{\sqrt{2}}-2\right)=2\)

\(\Leftrightarrow x+3-2\sqrt{2}=2\)

\(\Leftrightarrow x=2\sqrt{2}-1\)

16 tháng 1 2017

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=5\\\sqrt{x+5}+\sqrt{y+5}=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=25-2\sqrt{xy}\\x+y=54-2\sqrt{\left(x+5\right)\left(y+5\right)}\end{cases}}\)

\(\Rightarrow25-2\sqrt{xy}=54-2\sqrt{\left(x+5\right)\left(y+5\right)}\)

\(\Leftrightarrow2\sqrt{\left(x+5\right)\left(y+5\right)}=29+2\sqrt{xy}\)

\(\Rightarrow4\left(xy+5x+5y+25\right)=4xy+116\sqrt{xy}+841\)

\(\Leftrightarrow20\left(x+y\right)=116\sqrt{xy}+741\)

\(\Leftrightarrow20\left(25-2\sqrt{xy}\right)=116\sqrt{xy}+741\)

\(\Leftrightarrow156\sqrt{xy}=-241\)(vô lý) -> pt vô nghiệm

\(a,\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-y\\3-y-2y=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\-3y=4\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-\left(-\frac{4}{3}\right)\\y=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=-\frac{4}{3}\end{cases}}}\)

\(b,\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\left(1\right)\\4x+2y=11\left(2\right)\end{cases}}\)

Lấy ( 1 ) trừ ( 2 ) Ta được 0x + 0y = - 1 

=> hệ pt vô nghiệm 

\(c,\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}.\left(\sqrt{2}-\sqrt{3}y\right)-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{6}y-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\left(\sqrt{6}+\sqrt{3}\right)y=-1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\sqrt{3}.\frac{1}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=1\end{cases}}\)

1.trừ từng vế 2 pt có \(x+y-xy=1\)

\(< =>\left(x-1\right)\left(y-1\right)=0\)......

2.Cộng từng vế 2 pt có

\(\sqrt{x}+\sqrt{y}+\sqrt{x+1}+\sqrt{y+1}=2\)

mà đk là x;y\(\ge0\)nên vt\(\ge2\)

dấu = xr <=>x=y=0