\(\text{cho A =2016-2014+2012-2010+....-1842.Tinh A}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề \(\Rightarrow a^{2014}+b^{2014}-2\left(a^{2013}+b^{2013}\right)+a^{2012}+b^{2012}=0\)
\(\Leftrightarrow a^{2012}\left(a^2-2a+1\right)+b^{2012}\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow a^{2012}\left(a-1\right)^2+b^{2012}\left(b-1\right)^2=0\)
\(\Leftrightarrow\left(a=0\text{ hoặc }a=1\right)\text{ và }\left(b=0\text{ hoặc }b=1\right)\)
\(+a=0\text{ hoặc }a=1\text{ thì }a^{2014}=a^{2010}\)
\(+b=0\text{ hoặc }b=1\text{ thì }b^{2014}=b^{2010}\)
Suy ra \(a^{2014}+b^{2014}=a^{2010}+b^{2010}\)
. Ta có: \(\frac{x+1}{2016}+\frac{x+3}{2014}=\frac{x+5}{2012}+\frac{x+7}{2010}\) \(\Leftrightarrow\frac{x+1}{2016}+1+\frac{x+3}{2014}+1=\frac{x+5}{2012}+1\frac{x+7}{2010}+1\)
. \(\Leftrightarrow\frac{x+2017}{2016}+\frac{x+2017}{2014}-\frac{x+2017}{2012}-\frac{x+2017}{2010}=0\) \(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2014}-\frac{1}{2012}-\frac{1}{2010}\right)\)
\(\Leftrightarrow x+2017=0\) \(\Leftrightarrow x=-2017\)
\(\frac{x+1}{2016}+\frac{x+3}{2014}=\frac{x+5}{2012}+\frac{x+7}{2010}\)
\(\Rightarrow\left(\frac{x+1}{2016}+1\right)+\left(\frac{x+3}{2014}+1\right)=\left(\frac{x+5}{2012}+1\right)+\left(\frac{x+7}{2010}+1\right)\)
\(\Rightarrow\frac{x+2017}{2016}+\frac{x+2017}{2014}=\frac{x+2017}{2012}+\frac{x+2017}{2010}\)
\(\Rightarrow\frac{x+2017}{2016}+\frac{x+2017}{2014}-\frac{x+2017}{2012}-\frac{x+2017}{2010}=0\)
\(\Rightarrow\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2014}-\frac{1}{2012}-\frac{1}{2010}\right)=0\)
\(\Rightarrow x+2017=0\)\(\left(Vì\frac{1}{2016}+\frac{1}{2014}-\frac{1}{2012}-\frac{1}{2010}\ne0\right)\)
\(\Rightarrow x=0-2017\)
\(\Rightarrow x=-2017\)
Vậy x=-2017
mình không biết kq =mấy
nhứng mình c/m kq =2 là sai
\(A-2=\dfrac{4024.2014-2}{Khongquantam}-2=\dfrac{4024.2014-2-2.2011-2.2012.2010}{Khongquantam}\)
\(A-2=\dfrac{2\left(2012.2014-2011-2012.2010-1\right)}{Khongquantam}=\dfrac{2\left[2012.\left(2014-2010\right)-2011-1\right]}{Khongquantam}\)
\(A-2=\dfrac{2\left[4.2012-2011-1\right]}{Khongquantam}=\dfrac{2\left[3.2011+3\right]}{Khongquantam}\)
\(A-2=\dfrac{2\left[3.\left(2011+1\right)\right]}{Khongquantam}=\dfrac{2.3.2012}{Khongquantam}\ne0\)\(A-2\ne0\)
\(\Rightarrow A\ne2\Rightarrow kq=2=sai\)
\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)
\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)