cho tam giác abc, o là trung điểm bc, góc xOy = 60°, cạnh Ox cắt OB tại m, oy cắt ac tại n.
a, cm: obm~nco
b, cm MO và NO là phân giác của góc BMN và góc CNM
cm: BM.CN=OB2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
a.
\(\widehat{BMO}+\widehat{B}+\widehat{BOM}=\widehat{BOM}+\widehat{MON}+\widehat{CON}=180^0\)
\(\Rightarrow\widehat{BMO}=\widehat{CON}\) (do \(\widehat{B}=\widehat{MON}=60^0\))
\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\widehat{C}=60^0\\\widehat{BMO}=\widehat{CON}\end{matrix}\right.\) \(\Rightarrow\Delta OBM\sim\Delta NCO\) (g.g)
b.
Từ câu a \(\Rightarrow\dfrac{OB}{CN}=\dfrac{BM}{OC}\Rightarrow OB.OC=BM.CN\Rightarrow\dfrac{BC}{2}.\dfrac{BC}{2}=BM.CN\Rightarrow...\)
c.
Lần lượt kẻ OD và OE vuông góc MN và AB.
Do O cố định \(\Rightarrow\) OE cố định
Từ câu a ta có: \(\dfrac{BM}{OC}=\dfrac{OM}{ON}\Rightarrow\dfrac{BM}{OM}=\dfrac{OC}{ON}=\dfrac{OB}{ON}\) (1)
Đồng thời \(\widehat{B}=\widehat{MON}=60^0\) (2)
(1);(2) \(\Rightarrow\Delta OBM\sim\Delta NOM\left(c.g.c\right)\Rightarrow\widehat{BMO}=\widehat{OMN}\)
\(\Rightarrow\Delta_VOME=\Delta_VOMD\left(ch-gn\right)\)
\(\Rightarrow OD=OE\), mà OE cố định \(\Rightarrow OD\) cố định