K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
$\widehat{A}+\widehat{B}+\widehat{C}=180^0$ 

$\Rightarrow \widehat{A}=180^0-\widehat{B}-\widehat{C}=180^0-45^0-45^0=90^0$

$\Rightarrow$ tam giác $ABC$ là tam giác vuông tại $A$. Mà $\widehat{B}=\widehat{C}$ nên $ABC$ là tam giác vuông cân ở A

30 tháng 6 2018

Tam giác ABC có: Sin B = \(\frac{AC}{BC}\) (hệ thức lượng) => AC = Sin B.BC = Sin 450 . 10 = \(5\sqrt{2}\) (cm)

 Sin C = \(\frac{AB}{BC}\) (hệ thức lượng) => AB = Sin 300 . 10 = 5 (cm)

Ta có tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)

=> góc A = 1800 - 450 - 300 = 1050

Chúc bạn học tốt!

15 tháng 9 2021

vì tam giác ABC khg phải tam giác vuông nên cách làm trên sai

13 tháng 8 2021

bỏ số 4 ngay chỗ lưu ý dùm em

 

14 tháng 3 2021

thanks bn nhìu yeu

 

29 tháng 9 2023

\(\widehat{B}=180^o-60^o-45^o=75^o\)

Theo định lý sin ta có:

\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\)

\(\Rightarrow AC=\dfrac{AB\cdot sinB}{sinC}=\dfrac{5\cdot sin75^o}{sin45^o}=\dfrac{5+5\sqrt{3}}{2}\) 

Mà: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot5\cdot\dfrac{5+5\sqrt{3}}{2}\cdot sin60^o=\dfrac{75+25\sqrt{3}}{8}\left(dvdt\right)\)

29 tháng 9 2023

AB=R hả bạn

 

15 tháng 6 2022

chịu hoi =))))))

 

15 tháng 6 2022

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

NV
23 tháng 7 2021

Kẻ đường cao AH

Trong tam giác vuông ABH:

\(cotB=\dfrac{BH}{AH}\Rightarrow BH=AH.cotB\)

Trong tam giác vuông ACH:

\(cotC=\dfrac{CH}{AH}\Rightarrow CH=AH.cotC\)

\(\Rightarrow BH+CH=AH.cotB+AH.cotC\)

\(\Leftrightarrow BC=AH\left(cotB+cotC\right)\)

\(\Leftrightarrow AH=\dfrac{BC}{cotB+cotC}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\dfrac{BC^2}{cotB+cotC}=\dfrac{1}{2}.\dfrac{6^2}{cot45^0+cot30^0}\approx11,4\left(cm^2\right)\)

NV
23 tháng 7 2021

undefined

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Áp dụng định lí sin trong tam giác ABC, ta có:

\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\)

\( \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {60^o}.\frac{{12}}{{\sin {{45}^o}}} = 6\sqrt 6 \)

Lại có: \(\widehat A = {180^o} - ({60^o} + {45^o}) = {75^o}\)

\( \Rightarrow \)Diện tích tam giác ABC là:

\(S = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.12.6\sqrt 6 .\sin {75^o} \approx 85,2\)

Vậy diện tích tam giác ABC là 85,2.