Cho tam giác ABC
M là điểm nằm trong tam giác gọi D E F lần lượt là trọng tâm các tam giác MBC,MCS,MAB
CMR:tam giác DÈF đồng dạng tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
Bài làm
Gọi D là trung điểm của OC
Vì AD là đường trung truyến của tam giác AOC, mà N là trọng tâm
Nên \(ND=\frac{1}{3}AD\)( t/c đường trung tuyến )
Xét tam giác OBC có BD là đường trung tuyến, mà M là trọng tâm
Nên \(MD=\frac{1}{3}BD\)( t/c đường trung tuyến )
Xét tam giác ADB có\(\frac{ND}{AD}=\frac{MD}{BD}=\frac{MN}{AB}=\frac{1}{3}\)( Định lý Talet )
Bạn làm tương tự đối với 2 cạnh còn lại của tam giác MNP là MP và NP
Ta được \(\frac{MP}{AC}=\frac{1}{3}\) ; \(\frac{NP}{BC}=\frac{1}{\text{3}}\)
Từ đó suy ra \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}=\frac{1}{3}\)
\(\Rightarrow\)Tam giác MNP đồng dạng với ABC
Bạn nhớ soát lại bài. Có thể mình làm chưa đúng. Bạn nhé!
Cho M là điểm tùy ý nằm trong tam giác ABC; gọi D, E, F lần lượt là trọng tâm của tam giác ABC, MCA, MAB
CM: ΔDEF đồng dạng ΔABC
ai giúp Tony đi ! Chúc Tony học giỏi!!!!