K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

Cho M là điểm tùy ý nằm trong tam giác ABC; gọi D, E, F lần lượt là trọng tâm của tam giác ABC, MCA, MAB

CM: ΔDEF đồng dạng ΔABC

5 tháng 3 2019

ai giúp Tony đi ! Chúc Tony học giỏi!!!!

14 tháng 3 2021

undefined

hơi ngược xíu nha

26 tháng 3 2020

đếch nói đấy làm sao làm gì được nhau

11 tháng 5 2021

Giúp

 

10 tháng 2 2020

Bạn tự vẽ hình nhé

                                                Bài làm

Gọi D là trung điểm của OC

Vì AD là đường trung truyến của tam giác AOC, mà N là trọng tâm 

Nên \(ND=\frac{1}{3}AD\)( t/c đường trung tuyến )

Xét tam giác OBC có BD là đường trung tuyến, mà M là trọng tâm

Nên \(MD=\frac{1}{3}BD\)( t/c đường trung tuyến )

Xét tam giác ADB có\(\frac{ND}{AD}=\frac{MD}{BD}=\frac{MN}{AB}=\frac{1}{3}\)( Định lý Talet )

Bạn làm tương tự đối với 2 cạnh còn lại của tam giác MNP là MP và NP

Ta được \(\frac{MP}{AC}=\frac{1}{3}\)  ;  \(\frac{NP}{BC}=\frac{1}{\text{3}}\)

Từ đó suy ra \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}=\frac{1}{3}\)

\(\Rightarrow\)Tam giác MNP đồng dạng với ABC

Bạn nhớ soát lại bài. Có thể mình làm chưa đúng. Bạn nhé!