K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Để N có giá trị bằng số nguyên thì 9 phải chia hết cho \(\sqrt{x-5}\)

9 chia hết cho những số thì những số đó \(\inƯ\left(9\right)=\left\{1;3;9\right\}\)

Ta thử từng giá trị:

Nếu x = 1 thì thì \(\sqrt{1-5}=\left(-2\right)\)(nhận)

Rồi cứ như vậy làm típ

10 tháng 11 2016

Toán gì mà kì lạ vậy,lớp 3 chưa học!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

15 tháng 12 2016

Để N có giá trị nguyên

\(\Rightarrow\frac{9}{\sqrt{x}-5}\) có giá trị nguyên

\(\Rightarrow9⋮\sqrt{x}-5\)

\(\Rightarrow\sqrt{x}-5\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{-4;2;4;6;8;14\right\}\)

\(\Rightarrow x\in\left\{4;16;36;64;196\right\}\)

Vậy ...........

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
Với $x$ nguyên, để $N$ nguyên thì $\sqrt{x}-5$ là ước của $9$

$\Rightarrow \sqrt{x}-5\in\left\{\pm 1;\pm 3;\pm 9\right\}$

$\Rightarrow \sqrt{x}\in\left\{4; 6; 8; 2; 14; -4\right\}$

Vì $\sqrt{x}\geq 0$ nên: $\sqrt{x}\in\left\{4; 6; 8; 2; 14\right\}$

$\Rightarrow x\in\left\{16; 36; 64; 4; 196\right\}$

30 tháng 10 2016

\(N\in Z\Rightarrow9:^.\sqrt{x}-5\)\(\sqrt{x}\ge0\Rightarrow\sqrt{x}-5\ge-5\Rightarrow\sqrt{x}-5\in\left\{-3;-1;1;3;9\right\}\Rightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\)

\(\Rightarrow x\in\left\{4;16;36;64;196\right\}\)

18 tháng 9 2021

a) \(P=\dfrac{x-1+4\left(\sqrt{x}+1\right)+1}{x-1}.\dfrac{x-1}{x+2\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+4}{x+2\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)

b) \(P=\dfrac{\sqrt{x}+2}{\sqrt{x}}=1+\dfrac{2}{\sqrt{x}}\in Z\)

Do \(\sqrt{x}>0\)

\(\Rightarrow\sqrt{x}\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\Rightarrow x\in\left\{1;4\right\}\)