K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2015

Vì n chẵn nên n có dạng n = 2k (k thuộc Z)

\(A=\frac{2.k}{12}+\frac{4.k^2}{8}+\frac{8k^3}{24}=\frac{k}{6}+\frac{k^2}{2}+\frac{k^3}{3}=\frac{k}{6}+\frac{3.k^2}{6}+\frac{2.k^3}{6}=\frac{2.k^3+3.k^2+k}{6}\)

\(=\frac{k\left(2k^2+3k+1\right)}{6}=\frac{k\left[2k\left(k+1\right)+\left(k+1\right)\right]}{6}=\frac{k\left(k+1\right)\left(2k+1\right)}{6}=\frac{k\left(k+1\right)\left[\left(k+2\right)+\left(k-1\right)\right]}{6}\)

\(=\frac{k\left(k+1\right)\left(k+2\right)}{6}+\frac{\left(k-1\right)k\left(k+1\right)}{6}\)

nhận xét k; k+1; k+2 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 6 => \(\frac{k\left(k+1\right)\left(k+2\right)}{6}\)nguyên

tương tự: k-1; k; k+1 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 6=> \(\frac{\left(k-1\right)k\left(k+1\right)}{6}\)nguyên

vậy A nguyên

27 tháng 9 2017

\(\frac{n}{12}+\frac{n^2}{8}+\frac{n^3}{24}=\frac{2n+3n^2+n^3}{24}=\frac{n^3+2n^2+n^2+2n}{24}=\frac{n^2\left(n+2\right)+n\left(n+2\right)}{24}\)

\(=\frac{\left(n^2+n\right)\left(n+2\right)}{24}=\frac{n\left(n+1\right)\left(n+2\right)}{24}\)

Do n chẵn nên n=2k (k nguyên) => n+2=2k+2=2(k+1) => n(n+2)=2k.2(k+1)=4k(k+1)

k(k+1) là 2 số nguyên liên tiếp, trong đó có ít nhất 1 số chẵn nên k(k+1) chia hết cho 2 => 4k(k+1) chia hết cho 8

=>n(n+2) chia hết cho 8=>n(n+1)(n+2) chia hết cho 8 (1)

Mặt khác n;n+1;n+2 là 3 số nguyên liên tiếp nên trong đó có ít nhất 1 số chia hết cho 3 (tự chứng minh hoặc xem cách chứng minh trên mạng nhé)

=>n(n+1)(n+2) chia hết cho 3 (2)

Từ (1) và (2) và (3;8)=1 => n(n+1)(n+2) chia hết cho 3.8=24

=>\(\frac{n\left(n+1\right)\left(n+2\right)}{24}\) nguyên => đpcm

12 tháng 9 2018

a, Ta có: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}=\frac{n^5-n}{5}+\frac{n}{5}+\frac{n^3-n}{3}+\frac{n}{3}+\frac{7n}{15}\) 

\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\) 

Chứng minh \(n^5-n⋮5\Rightarrow\frac{n^5-n}{5}\in Z\) 

                   \(n^3-n⋮3\Rightarrow\frac{n^3-n}{3}\in Z\)

\(\Rightarrow\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\in Z\) 

=> Đpcm 

b, Tương tự dùng tính chất chia hết

20 tháng 10 2019

a, (n+3)2-(n-1)2

= n2+6n+9-n2+2n-1

= 8n + 8

= 8(n+1) chia hết cho 8

20 tháng 10 2019

Tiếp câu b nha

\(A=\frac{n^5}{120}+\frac{n^4}{10}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)

\(=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\)

Ta có:\(n^5+10n^4+35n^3+50n^2+24n\)

\(=n\left(n^4+10x^3+35x^2+50x+24\right)\)

\(=n\left(n^4+2n^3+8n^3+16n^2+19n^2+38n+12n+4\right)\)

\(=n\left(n+3\right)\left(n^3+3n^2+5n^2+15n+4n+12\right)\)

\(=n\left(n+2\right)\left(n+3\right)\left(n+4n+n+4\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3;5;8\)

\(ƯC\left(3;5;8\right)=1\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

Vậy A chia hết cho 120

20 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)=8\left(n+1\right)⋮8\forall n\in\mathbb{N}\) (đpcm)

b) Thử quy đồng hết lên đi (MSC = 12) rồi phân tích tiếp xem, đang bận ...

3 tháng 2 2017

a) A = n/3 + n2/2 + n3/6

A = 2n+3n2+n3/6

A = 2n+2n2+n2+n3/6

A = (n+1)(2n+n2)/6

A = n(n+1)(n+2)/6

Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6

Hay A thuộc Z (đpcm)

b) B = n4/24 + n3/4 + 11n2/24 + n/4

B = n4+6n3+11n2+6n/24

B = n(n3+6n2+11n+6)/24

B = n(n3+n2+5n2+5n+6n+6)/24

B = n(n+1)(n2+5n+6)/24

B = n(n+1)(n2+2n+3n+6)/24

B = n(n+1)(n+2)(n+3)/24

Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3

Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24

Hay B nguyên (đpcm)