K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2023

a) Tam giác ABE= tam giác CDF

=> EB=DF

b) Ta có: 

\(\widehat{ABE}=\widehat{FCD}\)

\(\Rightarrow\widehat{EDF}=\widehat{EBF}=\widehat{BEA}\)

=> EB//CD mà ED//BF

=> EBFD là h.b.h

c) Gọi K là trung điểm EF

=> K là trung điểm AC, BD, EF

=> AC, BD, EF đồng quy tại K

21 tháng 7 2021

a/ Do ABCD là hình bình hành nên:
- AB=CD; AD=BC
- Mà E là trung điểm của AD, F là trung điểm của BC
=> AE=ED=BF=FC
Xét △ABE và △FCD có:
- AE=CF (cmt)
- Góc BAE = Góc FCD (gt)
- AB=CD (gt)
=> △ABE=△CDF (c.g.c)
Vậy: BE=DF; góc ABE = góc CDF (đpcm)

b/ Ta có:
- BC // AD (gt)
- Tia BF thuộc tia BC, tia DE thuộc tia AD
=> BF // DE 
DE = BF (cmt)
=> DEBF là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau là hình bình hành)
Vậy: EB // DF (đpcm)

 

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AD = BC\); \(AD\) // \(BC\)

Mà \(E\), \(F\) là trung điểm của \(AD\), \(BC\) (gt)

Suy ra \(AE = ED = BF = FC\)

Xét tứ giác \(EBFD\) ta có:

\(ED = FB\) (cmt)

\(ED\) // \(BF\) (do \(AD\) // \(BC\))

Suy ra \(EDFB\) là hình bình hành

b) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)

Mà \(DEBF\) là hình bình hành (gt)

Suy ra \(O\) cũng là trung điểm của \(EF\)

Suy ra \(E\), \(O\), \(F\) thẳng hàng

27 tháng 10 2021

không có hình kìa

làm sao mà trả lời được

 

27 tháng 10 2021

b: Xét tứ giác EBFD có 

ED//BF

ED=BF

Do đó: EBFD là hình bình hành

9 tháng 12 2021

\(a,ABCD\text{ là hbh }\Rightarrow AB\text{//}CD;AB=CD\\ \Rightarrow EB\text{//}FD;\dfrac{1}{2}AB=\dfrac{1}{2}CD\\ \Rightarrow EB\text{//}FD;EB=FD\\ \Rightarrow EBFD\text{ là hbh}\\ b,\text{Vì }EBFD\text{ là hbh và }O\text{ là trung điểm }BD\)

\(\Rightarrow O\text{ là trung điểm }EF\)

Vậy O,E,F thẳng hàng

14 tháng 5 2022

refer

undefined

27 tháng 10 2021

Bị che một nửa góc rồi bạn ơi

a: Xét tứ giác BEDF có 

DE//BF

DE=BF

Do đó: BEDF là hình bình hành

b: Xét ΔAQD có 

E là trung điểm của AD

EP//QD

Do đó: P là trung điểm của AQ
Suy ra;AP=PQ(1)

Xét ΔCPB có 

F là trung điểm của BC

FQ//BP

Do đó: Q là trung điểm của CP

Suy ra: QC=PQ(2)

Từ (1) và (2) suy ra AP=PQ=QC