K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 6 2021

Dễ dàng chứng minh \(BD\perp\left(SAC\right)\Rightarrow BD\perp SC\)

Gọi O là tâm đáy, kẻ \(OH\perp SC\Rightarrow SC\perp\left(BDH\right)\)

\(\Rightarrow\widehat{BHD}\) hoặc góc bù của nó là góc giữa (SBC) và (SCD) \(\Rightarrow\widehat{BHD}=60^0\) hoặc \(120^0\)

\(\Rightarrow\widehat{BHO}\) bằng \(30^0\) hoặc \(60^0\)

Tam giác ABD đều \(\Rightarrow BD=a\) \(\Rightarrow OB=\dfrac{a}{2}\)

TH1: \(\widehat{BHO}=30^0\)

\(\Rightarrow OH=\dfrac{OB}{tan30^0}=\dfrac{a\sqrt{3}}{2}=OC\Rightarrow\Delta\) vuông OCH có cạnh huyền bằng cạnh góc vuông (loại)

TH2: \(\widehat{BHO}=60^0\Rightarrow OH=\dfrac{OB}{tan60^0}=\dfrac{a\sqrt{3}}{6}\)

\(\Rightarrow SA=AC.tan\widehat{SCA}=AC.\dfrac{OH}{\sqrt{OC^2-OH^2}}=\dfrac{a\sqrt{6}}{4}\)

Từ A kẻ \(AM\perp SB\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM=d\left(A;\left(SBC\right)\right)\)

\(AD||BC\Rightarrow AD||\left(SBC\right)\Rightarrow d\left(BK;AD\right)=d\left(AD;\left(SBC\right)\right)=d\left(A;\left(SBC\right)\right)=AM\)

\(\dfrac{1}{AM^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{11}{3a^2}\Rightarrow AM=\dfrac{a\sqrt{33}}{11}\)

20 tháng 6 2017

Đáp án D

12 tháng 9 2018

22 tháng 2 2021

S A B C D K

gọi K thuộc SC sao cho DK ​​\(\perp\) SC , BK \(\perp\)SC

=> ((SCD),(SBC)) = (DK,KB)

tính được SD = \(\frac{\sqrt{10}}{2}\)a, AC = \(\sqrt{3}\)a, SC= \(\frac{3\sqrt{2}}{2}\)a

\(DC^2=SD^2+SC^2-2SD.SC.cos\widehat{DSC}\)

=> \(\widehat{DSC}\)=....... (số xấu)

\(sin\widehat{DSC}\)\(\frac{DK}{SD}\)=> DK = \(\frac{\sqrt{2}}{2}\)=BK

\(DB^2=DK^2+BK^2-2.DK.BK.cos\alpha\)=> \(\alpha=\frac{\pi}{2}\)

22 tháng 2 2021

quản lí hỏi để thử tài học sinh à

4 tháng 11 2019

 

 

30 tháng 10 2018

8 tháng 5 2019

20 tháng 1 2017