Giá trị lớn nhất của biếu thức 5/ 4(x - 3)2 + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a) |x| > 0 => A = |x| + 5 > 5
=> GTNN của A là 5 <=> |x| = 0 <=> x = 0
b) |x + 1| > 0 => A = |x + 1| + 4 > 4
=> GTNN của A là 4 <=> |x + 1| = 0 <=> x = -1
1) A=|x|+5
ta có |x|>=0 với mọi x
=> A= |x|+5>=5
=> GTNN A=5 khi x=0
2) A=|x+1|+4
ta có " |x+1|>=0 với mọi x
=> A=|x+1|+4>=4
=.> GTNN A=4 khi x=-1
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(P\left(x\right)=x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x+2\right)^2+1\ge1\)
vậy GTNN của P(x) =1 khi và chỉ khi x=-2
Mình đã trả lời bạn rồi đó!
http://olm.vn/hoi-dap/question/594638.html
ko có gt lớn nhất