K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

Ta có: \(x+y=m+n\Rightarrow n=x+y-m\)

\(\Rightarrow S=x^2+y^2+m^2+\left(x+y-m\right)^2\)

\(=x^2+y^2+m^2+(x^2+y^2+m^2+2xy-2mx-2my)\)

\(=x^2+y^2+m^2+(x^2+y^2+m^2+2xy-2mx-2my)\)

\(=x^2+y^2+m^2+x^2+y^2+m^2+2xy-2mx-2my\)

\(=\left(x^2+2xy+y^2\right)+\left(m^2-2mx+x^2\right)+\left(m^2-2my+y^2\right)\)

\(=\left(x+y\right)^2+\left(m-x\right)^2+\left(m-y\right)^2\)

Vì x, y, m, n \(\in\) Z nên x + y; m - x; m - y là số nguyên

Vậy S luôn bằng tổng các bình phương của 3 số nguyên

21 tháng 7 2018

bài của   Never_NNL   sai nhé:

  \(x+y=m+n\)   \(\Rightarrow\)\(n=x+y-m\)

Ta có:    \(A=x^2+y^2+m^2+n^2\)

\(=x^2+y^2+m^2+\left(x+y-m\right)^2\)

\(=2x^2+2y^2+2m^2+2xy-2mx-2my\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2mx+m^2\right)+\left(y^2-2my+m^2\right)\)

\(=\left(x+y\right)^2+\left(x-m\right)^2+\left(y-m\right)^2\)

Vậy A là tổng của 3 số chính phương

21 tháng 7 2018

x + y = m + n

m = x + y - n

x^2 + y^2 + ( x + y - n )^2 + n^2 

= x^2 + y^2 + ( x^2 + xy- xn ) + ( xy + y^2 - ny ) - [ ( - xn ) + ( - ny ) + n^2 ] + n^2 

= x^2 + y^2 + x^2 + xy - xn + xy + y^2 - ny + xn + ny - n^2 + n^2 

= 2x^2 + 2y^2 + 2xy 

= x^2 + y^2 + ( x^2 + y^2 + 2xy )

= x^2 + y^2 + ( x + y )^2 ( dpcm )

29 tháng 5 2016

Ta thấy 11x⋮6 nên x⋮6.

Đặt x=6k (k nguyên).Thay vào (1) và rút gọn ta đượ c: 11k+3y=20

Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đói nhỏ ( là y ) theo k ta được :

   y = 20 -11k3

Tách guyên giá trị nguyên của biểu thức này :

   y = 7 - 4k +k - 13

Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó :

= 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6

Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng.

 Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức :

{=18t+6y=3−11t vớ i t là số nguyên tùy ý

 mk nha các bạn !!!

29 tháng 5 2016

Thành lập hội VICTOR_TÊN NHA

25 tháng 9 2020

Bạn tham khảo :
Ta có \(x+y=m+n\)

\(y=m+n-x\)

Thay vào S ta có

\(S=x^2+\left(m+n-x\right)^2+m^2+n^2\)

\(S=x^2+m^2+n^2+x^2+2mn-2mx-2nx+m^2+n^2\)

\(S=\left(x^2-2mx+m^2\right)+\left(n^2+m^2+2mn\right)+\left(n^2-2nx+x^2\right)\)

\(S=\left(x-m\right)^2+\left(n-x\right)^2+\left(n+m\right)^2\)

x,y,m,nZ

=> S luôn là tổng bình phương của 3 số nguyên

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((