K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

\(a.\)  Ta có:     \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}=\frac{3y^3-\left(6y^2+y^2\right)+\left(2y+3y\right)-1}{2y^3+\left(3y^2-4y^2\right)-\left(6y-2y\right)+3}\)

                      \(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^2+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}\)

                      \(B=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)

\(b.\)Ta có:  \(\frac{2B}{2y+3}=\frac{2.\frac{3y-1}{2y+3}}{2y+3}=\frac{\frac{2.\left(3y-1\right)}{2y+3}}{2y+3}=\frac{2.\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\)

\(\Rightarrow\)\(2y+3\inƯ\left(2\right)\)mà \(Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

Vì  \(2y+3\)là số nguyên lẻ  \(\Rightarrow\)\(2y+3=-1\)                         hoặc           \(2y+3=1\)

                                                     \(2y=\left(-1\right)-3=-4\)                          \(2y=1-3=-2\)

                                                      \(y=\left(-4\right)\div2=-2\)                             \(y=\left(-2\right)\div2=-1\)

                         Vậy để  \(\frac{2B}{2y+3}\in Z\)    thì   \(y=-2\)   hoặc   \(y=-1\)

\(c.\)Để  \(B\ge1\)\(\Rightarrow\)\(B-1\ge0\) hay  \(\frac{3y-1}{2y+3}-1\ge0\)\(\Rightarrow\)\(\frac{y-4}{2y+3}\ge0\)

* Trường hợp 1:       \(y-4\ge0\)              và               \(2y+3>0\)

                  \(\Rightarrow\)     \(y\ge4\)                               \(\Rightarrow\)  \(2y\)\(>-3\)

*                                                                            \(\Rightarrow\)\(y\)\(>-\frac{3}{2}\)

                    Vậy  \(y\ge4\)

* Trường hợp 2:        \(y-4\)\(\le\)\(0\)                      và                   \(2y+3\) \(< 0\)  

                       \(\Rightarrow\)\(y\le4\)                                                    \(\Rightarrow\)\(2y< 3\)

                                                                                                  \(\Rightarrow\)\(y< \frac{3}{2}\)

                         Vậy    \(y\le4\)

                              

16 tháng 1 2018

\(2y+3< 0\Rightarrow2y< -3\Rightarrow y< \frac{-3}{2}\)

14 tháng 8 2018

ai làm hộ mình đi

14 tháng 8 2018

Mình mới lớp 7 thui, mình ko bít lớp 8, xin lỗi, tha lỗi cho mình nha.

13 tháng 12 2015

\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^3+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2y+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)

b) \(\frac{2B}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\) =. 2y+3 thuộc U(2) ={ -2;-1;1;2} => x thuộc {-1 ; -2}

                                                           hoặc (2y+3)2 =3y -1 =>

                                                           hoặc   (2y+3)2 =-3y +1  =>

c) B>/1  

+Nếu 2y+3 >0 hay y> -3/2 

  => 3y -1 > 2y+3 => y >4  => y thuộc { 5;6;7...}

+ Nếu  2y+3<0 hay y < -3/2

=> 3y -1 < 2y+3 => y <4  => y thuộc { -2;-3;-4.....}

ai trả lời trước mik nhiều nhứt

24 tháng 6 2019

Đùa game, đánh xong rồi ấn nhầm nút hủy :) ok im fine

Bài 1: Câu hỏi của nguyễn hà - Toán lớp 8 | Học trực tuyến

Bài 2:

a) \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)

\(B=\frac{3y\left(y^2-2y+1\right)-\left(y^2-2y+1\right)}{2y\left(y^2-2y+1\right)+3\left(y^2-2y+1\right)}\)

\(B=\frac{\left(y-1\right)^2\left(3y-1\right)}{\left(y-1\right)^2\left(2y+3\right)}=\frac{3y-1}{2y+3}\)

b) \(\frac{2D}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\Leftrightarrow6y-2⋮\left(2y+3\right)^2\)

Dễ thấy tử số là số chẵn, mẫu số là số lẻ nên \(\frac{2D}{2y+3}\)không là số nguyên

Mặt khác vì mọi số nguyên đều chia hết cho 1 và -1

\(\Rightarrow\left[{}\begin{matrix}2y+3=1\\2y+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\)

c) \(B>1\Leftrightarrow\frac{3y-1}{2y+3}>1\)

\(\Leftrightarrow3y-1>2y+3\)

\(\Leftrightarrow y>4\)

Vậy....

ai lm hộ mk vs

b1: 

ĐKXĐ: \(x\ne0;x\ne\pm2\)

Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)

\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)

\(=\frac{12\left(x-1\right)}{x-2}\)

Vậy ....

Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)

Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0