Cho hình thang ABCD (AB//CD); AB < CD). Kẻ AP vuông góc với CD (P thuộc CD), BQ vuông góc với đường chéo AC (Q thuộc AC). Chứng minh: tam giác APC ~ tam giác BQA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
ABCD là hình thang cân \(=>\angle\left(CAB\right)=\angle\left(DBA\right)\)
=>2 góc ngoài cũng bằng nhau
=>2 tia phân giác 2 góc ngoài cũng tạo thành các góc bằng nhau
\(=>\angle\left(EAB\right)=\angle\left(FBA\right)\)=>ABFE là hình thang cân
b,từ 2 điểm A,B hạ các đường cao AM,BN
chứng minh được AMNB là h chữ nhật
=>MN=AB=6cm
dễ chứng minh được tam giác ADM=tam giác BCN(ch-cgn)
\(=>DM=CN=\dfrac{1}{2}\left(DC-MN\right)=\dfrac{1}{2}\left(12-6\right)=3cm\)
pytago=>\(BN=\sqrt{BC^2-NC^2}=\sqrt{5^2-3^2}=4cm\)
\(=>SABCD=\dfrac{BN\left(AB+CD\right)}{2}=........\)thay số tính
từ A kẻ đường thẳng song song với BC cắt CD tại E
\(\Rightarrow\) Tứ giác ABCE là hình bình hành \(\Rightarrow AB=CE=4cm;AE=BC=5cm\)\(\Rightarrow DE=CD-EC=4cm\)
xét tam giác ADE có AD2+ DE2 = 32 + 42 = 25; AE2 = 52 =25 \(\Rightarrow AD^2+DE^2=AE^2\)\(\Rightarrow\Delta ADE\) vuông tại D \(\Rightarrow AD\) Vuông góc với DE hay AD vuông góc với DC suy ra tứ giác ABCD là hình thang vuông
Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
Suy ra: \(\widehat{OAB}=\widehat{OBA}\)
mà \(\widehat{OAB}=\widehat{OCD}\)
và \(\widehat{OBA}=\widehat{ODC}\)
nên \(\widehat{OCD}=\widehat{ODC}\)
Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)
nên ΔODC cân tại O
Suy ra: OD=OC
Ta có: OA+OC=AC
OB+OD=BD
mà OA=OB
và OC=OD
nên AC=BD
Xét hình thang ABCD có AC=BD
nên ABCD là hình thang cân
a, Xét tam giác ADC có Q là trung điểm của AD và P là trung điểm của DC => QP là đường trung bình của tam giác ADC.=> QP//AC và QP=\(\dfrac{1}{2}\)AC (1)
Xét tam giác ABC có M là trung điểm của AB và N là trung điểm của BC => MN là đường trung bình của tam giác ABC => MN//AC và MN=\(\dfrac{1}{2}\)AC (2)
Từ (1) và (2) => QP=MN và QP//MN => MNPQ là hình bình hành
b,Nếu ABCD là hình thang cân <=> AC=BD (2 đường chéo) (3)
Xét tam giác BCD có N là trung điểm của BC và P là trung điểm của DC => NP là đương trung bình của tam giác BCD => NP//BD và NP=\(\dfrac{1}{2}\)BD (4)
=> Từ (1) (3) và (4) ta có QP=NP
=> ABCD là hình bình hành có QP=NP ( cạnh kề )
=> ABCD là hình thoi
BẠN TỰ VẼ HÌNH NHA
Kẻ \(AE,BF\bot CD\)
Vì \(AE\parallel BF(\bot CD),AB\parallel EF\) (ABCD là hình thang cân)
\(\Rightarrow ABFE\) là hình bình hành có \(\angle AEF=90\Rightarrow ABFE\) là hình chữ nhật
\(\Rightarrow AB=FE\)
Dễ dàng chứng minh được \(DE=CF\left(\Delta ADE=\Delta BFC\right)\)
\(\Rightarrow DE=\dfrac{CD-AB}{2}=\dfrac{7-3}{2}=2\)
\(\Rightarrow AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-2^2}=\sqrt{21}\)
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).AE=\dfrac{1}{2}\left(7+3\right).\sqrt{21}=5\sqrt{21}\)
Xét \(2\Delta:\Delta APC\) và \(\Delta BQA\) có:
\(\left\{{}\begin{matrix}\widehat{APC}=\widehat{BQA}=90^o\\\widehat{BAQ}=\widehat{ACP}\left(slt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta APC\sim\Delta BQA\left(g-g\right)\)