cho a,b,c>0 và a+b+c=6 tìm gtnn của A=\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2a+2b+2c}\)(cô si)
\(P\ge\frac{6^2}{2.6}=3\)dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
vậy dấu "=" xảy ra khi \(a=b=c=1\)
\(< =>MIN:P=3\)
Hoàng Như Quỳnh đấy có phải cô si đâu ? Bunya phân thức mà ~~
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : ... ( như bạn Hoàng Như Quỳnh )
Dấu "=" xảy ra <=> a = b = c = 2
dùng bất đẳng thức Schwarz:
A>= \(\frac{\left(a+b+c\right)^2}{a+b+b+c+c+a}=\frac{\left(a+b+c\right)^2}{2\cdot\left(a+b+c\right)}=\frac{1}{2}\)
dấu = xảy ra <=> a=b=c=1/3
. Áp dụng BĐT Bunhiacốpxki cho hai bộ số \(\frac{a}{\sqrt{a+b}},\frac{b}{\sqrt{b+c}},\frac{c}{\sqrt{c+a}}\) và \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) , ta có:
\(\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)\left(a+b+b+c+c+a\right)\) \(\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)=\(\frac{a+b+c}{2}\) =\(\frac{1}{2}\)
.
đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)
\(S=\left(a^2+b^2+c^2+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}+\frac{1}{8a}+\frac{1}{8b}+\frac{1}{8c}\right)+\frac{3}{4a}+\frac{3}{4b}+\frac{3}{4c}\)
\(\ge9\sqrt[9]{a^2b^2c^2.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}.\frac{1}{8a}.\frac{1}{8b}.\frac{1}{8c}}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge\frac{9}{4}+9.\frac{1}{\sqrt[3]{abc}}\ge\frac{9}{4}+\frac{9}{4}.\frac{1}{\frac{a+b+c}{3}}\ge\frac{9}{4}+\frac{9}{4}.2=\frac{27}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
Vậy \(Min_S=\frac{27}{4}\)
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
\(áp\)\(dụng\)\(BĐT\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(ta\)\(có\)\(\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge\frac{4a^2}{b^2+c^2}\)
\(\Rightarrow P\ge\frac{4a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}\)
\(=\frac{3a^2}{b^2+c^2}+\frac{a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}\)
\(\ge\frac{3a^2}{b^2+c^2}+2\ge3+2=5\)
dấu = xảy ra khi \(a^2=2b^22c^2\)
Những bài ntn chúng ta nên nhẩm ngiệm để cô si
ta có A=\(\frac{a^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{4b^2}+\frac{b^2}{a^2}+\frac{a^2}{4c^2}+\frac{c^2}{a^2}+\frac{3}{4}\left(\frac{a^2}{b^2}+\frac{a^2}{c^2}\right)\)
Áp dụng bđt cô si cho cặp sô thứ 1, cho cặp số thứ 2
Ta có\(\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge\frac{4a^2}{b^2+c^2}=4\Rightarrow\frac{3}{4}\left(\frac{a^2}{b^2}+\frac{a^2}{c^2}\right)\ge3\)
+ hết vào ...=> A>=...
dấu = xáy ra <=> b=c=a=1/căn(2)