Nhờ mn giúp mình với: Tìm n để \(\dfrac{4n-6}{3-2n}\) có giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{4n+6-7}{2n+3}=2-\dfrac{7}{2n+3}\)
A lớn nhất khi 2n+3=-1
=>2n=-4
=>n=-2
A nhỏ nhất khi 2n+3=1
=>n=-1
Lời giải:
$A=\frac{15-3n}{n+2}=\frac{21-3(n+2)}{n+2}=\frac{21}{n+2}-3$
Để $A$ lớn nhất thì $\frac{21}{n+2}$ lớn nhất
Điều này xảy ra khi $n+2>0$ và $n+2$ nhỏ nhất.
Với $n$ nguyên, $n+2>0$ và nhỏ nhất bằng 1
$\Rightarrow n+2=1$
$\Rightarrow n=-1$
------------------------------------
$B=\frac{17-2(2n+1)}{2n+1}=\frac{17}{2n+1}-2$
Để $B$ lớn nhất thì $\frac{17}{2n+1}$ lớn nhất
Điều này xảy ra khi $2n+1>0$ và $2n+1$ nhỏ nhất
Với $n$ nguyên thì $2n+1$ nguyên dương nhỏ nhất bằng 1
$\Rightarrow 2n+1=1$
$\Rightarrow n=0$
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3
=> 2.(2n-3)+5\(⋮\)2n-3
Mà 2.(2n-3)\(⋮\)2n-3
=>5\(⋮\)2n-3
=>2n-3\(\in\)Ư(5)
lập bảng
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
Vậy n \(\in\){-1;1;2;4}
b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0
TH1 2n-3=1
2n=1+3
2n=4
n=4:2
n=2( chọn)
Vậy n=2
Ta có `:`
`( 4n-6 )/( 3-2n ) = -( ( 4n-6 )/( 2n-3 )) = -2`
`=> ( 4n-6 )/( 3-2n )=-2 AAx`
`=>` Đề sai `bb!`
Mình đánh nhầm đề rồi nha