Cho ΔABC cân tại (Â < 90 độ). Kẻ BD ⊥ AC (D ∈ AC), CE ⊥ AB (E ∈ AB), BD và CE cắt nhau tại H.
a. Chứng minh: BD = CE.
b. Chứng minh: ΔBHC cân.
c. Chứng minh: AH là đường trung trực của BC.
d. Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh: góc ECB và góc DKC.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔBHC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔBHC cân tại H
c: Ta có: AB=AC
HB=HC
Do đó: AH là đường trung trựuc của BC
thanks ạ