Cho tứ giác ABCD có A(-1;7) , B(-1;1), C(5;1), D(7;5). Tìm tọa độ giao điểm I của hai đường chéo tứ giác.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^0\)
Ta co A:B:C;D = 2:3:4:5
\(\Rightarrow\)\(\dfrac{A}{2}\) = \(\dfrac{B}{3}\) = \(\dfrac{C}{4}\) = \(\dfrac{D}{5}\) = \(\dfrac{A+B+C+D}{2+3+4+5}\) = \(\dfrac{360}{14}\) = \(\dfrac{180}{7}\)
\(\Rightarrow\) A= \(\dfrac{180}{7}\). 2 \(\approx\) 51
B= \(\dfrac{180}{7}\). 3 \(\approx\) 77
C= \(\dfrac{180}{7}\). 4 \(\approx\) 103
D= \(\dfrac{180}{7}\). 5 \(\approx\) 129
Ta thay: A+D=180 ; B+C=180 \(\Rightarrow\) ABCD la hinh thang
na do hum ne
mabe kiem tra no lon nguoc