cho tam giác ABC cân tại A, tia phân giác góc B và góc C cắt nhau tại O. Từ A vẽ đường thẳng d song song BC.Cm :
a)Tam giác ABM và tam giác ACN
b)A là TĐ của đường thẳng DE
c)3đường thẳng AO, BE, CD cùng đi qua 1 điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)
\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)
mà ABC= ACB(t/g ABC cân A)
\(\rightarrow ABM=ACN\)
Xét t/g ABM và t/g ACN
Có ^BAC chung
AC= AB(t/g ABC cân A)
^ABM= ^ACN(cmt)
\(\rightarrow\)t/g ABM = t/g ACN(gcg)
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D