K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2015

A = x2 - 2xy + 6y2 - 12x + 2y + 45

   = (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4

   = [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4

   = (x - y - 6)2 + 5(y - 1)2 + 4

Vì (x - y - 6)2 >= 0 với mọi x, y

   5(y2 - 1) >= 0 với mọi y

=> Amin = 4 <=> y = 1, x = 7

6 tháng 12 2015

A = x2 - 2xy + 6y2 - 12x + 2y + 45

   = (x2 - 2xy + y2 - 12x + 12y + 36) + (5y2 - 10y + 5) + 4

   = [(x - y)2 - 12(x - y) + 6^2] + 5(y2 - 2y + 1) + 4

   = (x - y - 6)2 + 5(y - 1)2 + 4

Vì (x - y - 6)2 >= 0 với mọi x, y

   5(y2 - 1) >= 0 với mọi y

=> Amin = 4 <=> y = 1, x = 7

6 tháng 12 2015

tick mk làm cho

17 tháng 3 2020

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(A=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

GTNN của A = 4 khi và chỉ khi  \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}\)

9 tháng 9 2017

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(A=\left(x^2-2xy+y^2-12x+12y+36\right)+\left(5y^2-10y+5\right)+4\)

\(A=\left[\left(x-y\right)^2-12.\left(x-y\right)+6^2\right]+5\left(y^2-2y+1\right)+4\)

\(A=\left(x-y-6\right)^2+5.\left(y-1\right)^2+4\)

\(\left(x-y-6\right)^2\ge0\forall x,y\)

\(5.\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow A_{Min}=4\Leftrightarrow y=1,x=7\)

10 tháng 9 2017

thanks cậu nha

6 tháng 11 2016

phân tích đa thức có dạng m2 + n ( n thuộc z)

6 tháng 11 2016

bàn làm giúp mình đk ko ạ!

14 tháng 2 2018

x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN = 4 khi (x;y) = {(7;1)}

14 tháng 2 2018

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)

\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

GTNN A = 4 Khi: \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)

5 tháng 2 2017

\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)

Amin=4 khi y=1; x=7

22 tháng 10 2019

\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)

\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)

\(Amin=4\)\(khi\)\(y=1;x=7\)