K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét \(VT=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(1\right)\)

Xét \(VP=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

27 tháng 10 2016

LINK dưới đây bạn nhé

http://olm.vn/hoi-dap/question/143125.html

29 tháng 10 2018

áp dụng dãy tỉ số = nhau ta có

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c-d}\)

Ta xét

Vế 1  \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{ab}{cd}\)( nhân cả tử mẫu lại với nhau )

Vế 2 : \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\frac{a^2-b^2}{c^2-d^2}\) ( nhân cả tử cả  mẫu với nhau )

Mà Vế 1 = vế 2

=> \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)

29 tháng 10 2018

đợi tui tí dược ko

19 tháng 12 2016

Bài 1:
Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\) (1)

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+c^2}\)

 

 

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

26 tháng 12 2019

a) Đặt  \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

26 tháng 12 2019

a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

26 tháng 7 2016

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{a.a}{c.c}=\frac{b.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

30 tháng 5 2019

Ta có 

\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Khi đó 

\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

30 tháng 5 2019

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)

Do \(a+b^2\ge2b\sqrt{a}\)

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Do \(\sqrt{a}\le\frac{a+1}{2}\)

1 tháng 10 2017

1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)