chotam giac abc nhon co ab<ac ,trung tuyen am tren tia am lay d sao cho am=md ,e la diem doi xung voi a qua bc ,ha la giao cua ae va bc cm ae vuong goc voi ed
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựng đường cao BH.
Xét tam giác vuông CHB ta có .\(BC^2=BH^2+HC^2=BH^2+\left(AC-AH\right)^2\)
\(=BH^2+AH^2+AC^2-2AC.AH\)
Ta có \(AH=CB.\cos A\)
suy ra \(BC^2=BH^2+AH^2+AC^2-2AC.CB.\cos A\)
Hay \(BC^2=BA^2+AC^2-2AC.BC.\cos A\)
\(\Leftrightarrow a^2=b^2+c^2-2bc\cos A\)
a: Xét tư giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE là tứ giác nội tiếp
b: CDHE là tứ giác nội tiếp
=>gó BED=góc FCB
góc FEH=góc BAD
mà góc FCB=góc BAD
nên góc BED=góc FEB
=>EB là phân giác của góc FED
c: góc IEO=góc IEH+góc OEH
=góc IHE+góc OBE
=góc BHD+góc CBH=90 độ
=>IE là tiếp tuyến của (O)
Hình vẽ:
Giải:
Xét tam giác ABH và tam giác DBH, ta có:
\(\widehat{AHB}=\widehat{DHB}=90^0\)
\(HA=HD\left(gt\right)\)
HB là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DBH\) (Hai cạnh góc vuông)
Lại xét tam giác ACH và tam giác DCH, ta có:
\(\widehat{AHC}=\widehat{DHC}=90^0\)
\(HA=HD\left(gt\right)\)
HC là cạnh chung
\(\Rightarrow\Delta ACH=\Delta DCH\) (Hai cạnh góc vuông)
Chúc bạn học tốt!
Vẽ hai đường trung trực của hai cạnh của tam giác
Gọi O là giao điểm của chúng
⇒ Tâm của đường tròn ngoại tiếp ∆ABC là O