1)Tìm 3 chữ số tận cùng của \(1^3+2^3+....+\left(2011^{2017}\right)^3\)
2)Tìm dư khi chia \(1^{2016}+2^{2016}+....+2016^{2016}\) cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1!+2!+3!+4!=33
5!=120;6!=720;7! 2 chữ số tận cùng là 40;8! hai chũ số tận cùng là 20
9! hai chữ số tận cùng là 80.bắt đầu từ 10! trở đi 2 chữ số tận cùng là 00.do đó các chữ số tận cùng của biểu thức A là 33+20+20+40+20+80=213.vậy 2 chữ số tận cùng biểu thức A là 13
\(A=\left(1+2+3+...+2016+2017\right)^2\)
\(\Rightarrow A=\left\{\frac{\left(2017+1\right)\left[\left(2017-1\right):1+1\right]}{2}\right\}^2\)
\(\Rightarrow A=\left(\frac{2018.2017}{2}\right)^2=2035153^2\)
=>A = (............59). Vậy 2 chữ số tận cùng của A là 59
a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017
=> 2A-A= 2^2017-1
=> A= 2^2017-1/2
Lời giải:
$M=3^{2017}-3^{2016}+3^{2015}-....+3-1$
$3M=3^{2018}-3^{2017}+3^{2016}-...+3^2-3$
$M+3M=3^{2018}-1$
$4M=3^{2018}-1$
$16M=4(3^{2018}-1)$
Ta thấy: $3^4=81\equiv 1\pmod {10}$
$\Rightarrow 3^{2018}=(3^4)^{504}.3^2\equiv 1^{504}.3^2\equiv 9\pmod {10}$
$\Rightarrow 16M=4(3^{2018}-1)\equiv 4(9-1)\equiv 32\equiv 2\pmod {10}$
Vậy $16M$ tận cùng là $2$
"=" là đồng dư
\(2017^3=3\left(mod10\right)=>\left(2017^3\right)^{672}=3^{672}\left(mod10\right)=\left(3^2\right)^{336}=\left(-1\right)^{336}=1\left(mod10\right)\)
vậy 20172016 tận cùng = 1
1)1
2)3
du 2 va 3